Skip to main content
Log in

Landslide susceptibility zonation mapping using logistic regression and its validation in Hashtchin Region, northwest of Iran

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Landslide susceptibility zonation mapping assists researchers greatly to understand the spatial distribution of slope failure probability in a region. Being extremely useful in reducing landslide hazards, such maps could simply be produced using both qualitative and quantitative methods. In the present study, a multivariate statistical method called ‘logistic regression’ was used to assess landslide susceptibility in Hashtchin region, situated in west of Alborz Mountainsnorthwest of Iran. In this study, two independent variables, categorical (predictor) and continuous, were drawn on together in the model. To identify the region’s landslides use was made of aerial photographs, field studies and topographic maps. To prepare the database of factors affecting the region’s landslides and to determine landslide zones, geographic information system (GIS) was used. Using such information, landslide susceptibility modeling was accomplished. The data related to factors causing landslides were extracted as independent variables in each cell (in 50 m×50 m cells). Then, the whole data were input into the SPSS, Version 18. The prepared database was later analyzed using logistic regression, the forward stepwise method and based on maximum likelihood estimation. Regression equation was determined using obtained constants and coefficients and the landslide susceptibility of the area in grid-cells (pixels) was computed between 0 and 0.9954. The Receiver Operating Characteristic (ROC) curve was used to assess the accuracy of the logistic regression model. The predicting ability of the model was 84.1% given the area under ROC curve. Finally, the degree of success of landslide susceptibility zonation mapping was estimated to be 79%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleotti, P. and Chowdhury R. (1999) Landslide hazard assessment: summary review and new perspectives. Bull. Engg. Geol. Environ., v.58, pp.21–44.

    Article  Google Scholar 

  • Anbalagan, D. (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Engg. Geol., v.32, pp.269–277.

    Article  Google Scholar 

  • Ansari, F. and Blurchi, M.C. (1996) Landslides of Ardabile Province, Iran (in Persian). Geol. Surv Iran, Iran. 46 pp.

    Google Scholar 

  • Atkinson, P.M. and Massari, R. (1998) Generalized linear modeling of landslide susceptibility in the Central Apennines, Italy. Computers & Geosciences, v.24(4), pp.373–385.

    Article  Google Scholar 

  • Ayalew, L. and Yamagishi, H. (2005) The application of GISbased logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, v.65, pp.15–31.

    Article  Google Scholar 

  • Ayalew, L., Yamagishi, H., Marui, H. and Kanno, T. (2005) Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engg. Geol., v.81, pp.432–445.

    Article  Google Scholar 

  • Bakker, W.H., Grabmaier, K.A., Hunmeman, G.C., Meer, F.D., Prakash, A., Tempfli, K., Gieske, A.S.M., Hecker, C.A., Janseen, L.L.F., Parodi, G.N., Reeves, C.V., Weir, M.J.C., Gorte, B.G.H., Horn, J.A., Kerle, N., Pohl, C., Ruitenbeek, F.J. and Woldai, T. (2004) Principles of remote sensing, an introductory textbook. The international institute for geo-informational science and earth observation (ITC), Enschede, the Netherlands. 540 p.

    Google Scholar 

  • Brabb, E.E., Pampeyan, E.H. and Bonilla, M.G. (1972) Landslide susceptibility in San Mateo County, California. Misc. Field Studies map MF360 (scale 1:62500). U.S. Geol. Surv., Reston, Va.

    Google Scholar 

  • Can, T., Nefeslioglu, H.A., Gokceoglu, C., Sonmez, H.N. and Duman, T.Y. (2005) Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology v.72, pp.250–271.

    Article  Google Scholar 

  • Carrara, A., Cardinali, M., Detti, R., Guzzeti, F., Pasqui, V. and Reichenbach, P. (1990) Geographical information system and multivariate models in landslide hazard evaluation. In: ALPS 90: Alpine landslide practical seminar, sixth international conference and field workshop on landslides, Aug. 31-Sept.12, Milan, Italy, Universitá degli Studi de Milano, pp. 17–28.

    Google Scholar 

  • Carrara, A. (1983) Multivariate models for landslide hazard evaluation. Mathematical Geol., v.3, pp.403–426.

    Article  Google Scholar 

  • Carrara, A., Cardinali, M., Detti R., Guzzetti F., Pasqui V., Reichenbach P., 1991. GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, v.16, pp.427–445.

    Article  Google Scholar 

  • Chang, K.T., Chiang, S.H. and Hsu, M.L. (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology, v.89 (3–4), pp.335–347.

    Article  Google Scholar 

  • Cox, D.R. and Snell, E.J. (1989) The analysis of binary data. 2nd Ed.) Chapman and Hall London, 236p.

    Google Scholar 

  • Dai, F.C. and Lee, C.F. (2002) Landslide characteristics and slope instability modeling using GIS Lantau Island, Hong Kong. Geomorphology, v.42, pp.213–228.

    Google Scholar 

  • Dai, F.C., Lee, C.F., Li, J. and Xu, Z.W. (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ. Geol., v.40(3), pp.381–391.

    Google Scholar 

  • Dai, F.C., Lee, C.F. and Wang, S.J. (1999) Analysis of rainstorminduced slide-debris flows on natural terrain of Lantau Island, Hong Kong. Engg. Geol., v.51, pp.279–290.

    Google Scholar 

  • Dai, F.C., Lee, C.F. and Ngai, Y.Y. (2002) Landslide risk assessment and management: an overview. Engg. Geol., v.64 (1), pp.65–87.

    Article  Google Scholar 

  • Davies, R.G., Clark, G.C., Hamzepour, B. and Jones, C.R. (1975) Explanatory Text of the Bandar-e-Pahlavi quadrangle map, 1:250000. Geol. Surv. Iran, No. D3. 203p.

  • Davies, R.G., Jones, C.R., Hamzepour, B. and Clark, G.C. (1972) The Geology of the Masuleh Sheet (northwest IRAN). Geol. Surv. Iran, Rep. No. 24, 110p.

    Google Scholar 

  • Davis, J.C., Chung, C.J. and Ohlmacher, G.C. (2006) Two models for evaluating landslide hazards, Computers & Geosciences, v.32, pp.1120–1127.

    Article  Google Scholar 

  • Davis, J.C. and Ohlmacher G.C. (2002) Landslide hazard prediction using generalized logistic regression. In: Proc. 8th Annual Conf. Internat. Assoc. Mathematical Geol., Berlin, Germany, pp. 501–506.

    Google Scholar 

  • Donati, L. and Turrini, M.C. (2002) An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy). Engg. Geol., v.63, pp.277–289.

    Article  Google Scholar 

  • Dong J.J., Tung, Y.H., Chen, C.C., Liao, J.J. and Pan, Y.W. (2011) Logistic regression model for predicting the failure probability of a landslide dam. Engg. Geol., v.117, pp.52–61.

    Article  Google Scholar 

  • Duman, T.Y., Can T., Gokceoglu, C., Nefeslioglu, H. A. and Sonmez, H. (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ. Geol., 51, pp.241–256.

    Article  Google Scholar 

  • Dwi Wahono, B. F. (2010) Applications of statistical and heuristic methods for landslide susceptibility assessments: A case study in Wadas Lintang Sub District, Wonosobo Regency, Central Java Province, Inonesia. Supervisor: Sri Hadmoko, D. and van Westen C. J., Gadjah Mada University, International Institute for Geo-Information and Earth Observation. Thesis for the degree of Master of Science. pp. 1–6.

    Google Scholar 

  • Faridi, M. and Anvari, A. (1996) Geological map of the Hashtchin area, 1:100000. Iran: Geol. Surv. Iran, No. 56–4.

    Google Scholar 

  • Fatemi Aghda, M., Ghayomian J., Farahani Ashghali A. (2003) Evaluation of statistical methods in landslide hazard analaysis. Geol. Surv. Iran, Geosciences, No.47–48, pp. 28–47.

    Google Scholar 

  • Fernández, T., Irigaray, C., El Hamdouni, R. and Chacón, J. (2003) Methodology for Landslide Susceptibility Mapping by Means of a GIS. Application to the Contraviesa Area (Granada, Spain). Natural Hazards, v.30, pp.297–308.

    Article  Google Scholar 

  • Fourniadis, I.G., Liu, J.G. and Mason, P.J. (2007) Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery: Wushan-Badong. Geomorphology, v.84, pp.126–144.

    Article  Google Scholar 

  • Gómez, H. and Kavzoglu, T. (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engg. Geol., v.78, pp.11–27.

    Article  Google Scholar 

  • Greco, R., Sorriso-Valvo, M. and Catalano, E. (2007) Logistic regression analysis in the evaluation of mass-movement susceptibility: the Aspromonte case study, Calabria, Italy. Engg. Geol., v.89, pp.47–66.

    Article  Google Scholar 

  • Grozavu, A., Mãrgãrint, M.C. and Patriche, C.V. (2012) Landslide susceptibility assessment in the brâieti-sineti sector of Iai Cuesta. Carpathian Jour. Earth Environ. Sci., v.5(2), pp.61–70.

    Google Scholar 

  • Guzzetti, F., Carrara, A., Cardinali, M. and Reichenbach, P. (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, v.31, pp.181–216.

    Article  Google Scholar 

  • Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M. and Galli, M. (2006) Estimating the quality of landslide susceptibility models. Geomorphology, v.1–2, pp.166–184.

    Article  Google Scholar 

  • Haeri, S.M. and Samiee, A.H. (1997) A new method for landslide hazard microzonation based on micro-zonation studies in Mazandaran Province. Geol. Surv. Iran, Geosciences, v.23–24, pp.2–15.

    Google Scholar 

  • Hashemi Tabatabaei, S. (1998) Landslide hazard zonation in southwest of Ardabil Province Iran (in Persian). Ministry of Roads and Urban Development, Tehran, Iran. Vol. 2. 72p.

    Google Scholar 

  • Hemmati, R., Dolatimehr, A., Nasirifar A., Shahbazi, M, Hezhabrpour, Gh. and Aghaei KH. (2007) Ardabil Province climate (in Persian)). Applied Meteorology research center of Ardabil, Islamic Republication of Iran Meteorological Organization, Ministry of Roads and Urban Development Iran, 143p.

    Google Scholar 

  • Ilinca, V. and Gheuca, I. (2011) The red lake landslide (Ucigau Mountain, Romania). Carpathian Jour. Earth Environ. Sci., v.6(1), pp.263–272.

    Google Scholar 

  • Jadda, M., Shafri, H.Z.M., Mansor, S.B., Sharifikia, M., and Pirasteh, S., 2009. Landslide susceptibility evaluation and factor effect analysis using probabilistic-frequency ratio model. European Jour. Scientific Res., v.33 (4), pp.654–668.

    Google Scholar 

  • John, R.D., Anne-Gaelle, A., James, D.S. and Lavs, B. (2006) Validation of a region-wide model of landslide susceptibility in the Manawatu-Wanganui region of New Zealand. Geomorphology, v.1–4, pp.70–79.

    Google Scholar 

  • Kamp, U., Growley, B.J., Khattak, G.A. and Owen, L.A., (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology, v.101, pp.631–642.

    Article  Google Scholar 

  • Kleinbaum, D.G. and Klein, M. (2010) Logistic regression: a self learning text. Third edition. Springer New York. 701p.

    Book  Google Scholar 

  • Knapen, A., Kitutu, M.G., Poesen, J., Breugelmans, W., Deckers J. and Muwanga A. (2006) Landslides in a densely populated county at the foot slopes of Mount Elgon (Uganda): Characteristics and causal factors. Geomorphology, v.73, pp.149–165.

    Article  Google Scholar 

  • Komakpanah, A. and Hafezimoghadasi, N. (1994) Landslide hazard zonation methods (in Persian). Workshop proceeding on landslide damage mitigation strategies in Iran, International Institute of Earthquake Engineering and Seismology, pp. 390–414.

    Google Scholar 

  • Lan, H.X., Zhou, C.H., Wang, L.J., Zhang, H.Y. and Li, R.H. (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Engg. Geol., v.76 (1–2), pp.109–128.

    Article  Google Scholar 

  • Lee, S. (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ. Magmt., v.34 (2), pp.223–232.

    Article  Google Scholar 

  • Lee, S. (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Internat. Jour. Remote Sensing, v.7, pp.1477–1491.

    Article  Google Scholar 

  • Lee, S. and Min, K. (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. v.40, pp.1095–1113.

    Article  Google Scholar 

  • Mahdavifar, M.R. (1996) Landslide hazard zonation in Khorshrostam region (southwest of Khalkhal County) (in Persian). MS Diss., Tarbiat Modarres University Tehran, Iran. 154p.

    Google Scholar 

  • Mathew, J., Jha, K., Rawat, G.S. (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides, v.6, pp.17–26.

    Article  Google Scholar 

  • Mehrotra, G., Kanungo, D. and Mahadeviah, K. (1996) Landslide hazard assessment-A need for environmental management. Proc. 7th Internat. Symp. Landslides, Trondheim, Norway, pp.315–320.

    Google Scholar 

  • Menard, S. (2002) Applied Logistic Regression Analysis, 2nd (Ed.). Sage University Paper Series on Quantitative Applications in Social Sciences, v.106. Thousand Oaks, California. 111p.

  • Meusburger, K. and Alewell, C. (2009) On the influence of temporal change on the validity of landslide susceptibility maps. Nat. Hazards Earth Syst. Sci. v.9, pp.1495–1507.

    Article  Google Scholar 

  • Nagelkerke, N.J.D. (1991) A note on a general definition of the coefficient of determination. Biometrika, v.78, pp.691–692.

    Article  Google Scholar 

  • Naranjo, J.L., Van Westen, C.J. and Soeters, R. (1994) Evaluating the use of training areas in bivariate statistical landslide hazard analysis: a case study in Colombia. ITC-Jour., v.3, pp.292–300.

    Google Scholar 

  • Niemann, K.O. and Howes D.E. (1991) Applicability of digital terrain models for slope stability assessment. ITC-Jour., v.3, pp.127–137.

    Google Scholar 

  • Nikandish, N., Mir Sanei R., 1996. Introduction to Ardabile Province landslides, Iran (in Persian). Ministry of Jihad-e-Agriculture Tehran, Iran. 63 pp.

    Google Scholar 

  • Ohlmacher, C.G., Davis C.J., 2003. Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engg. Geol., v.69, pp.331–343.

    Article  Google Scholar 

  • Okamoto, T., Larsen, J.O., Matsuura, S., Asano, S., Takeuchi, Y. and Grande, L., 2004. Displacement properties of landslide masses at the initiation of failure in quick clay deposits and the effects of meteorological and hydrological factors. Engg. Geol., v.72, pp.233–251.

    Article  Google Scholar 

  • Pallant, J. (2007) A step-by-step guide to data analaysis using SPSS version 15, SPSS, survival manual. McGraw-Hill Australia. 335p.

    Google Scholar 

  • Pars Karst Water (P.K.W.), Research and Exploration Co. (2001). Hydrology and water balance study, Karstic water resources and hard formation studies in Khalkhal area. Ardabil regional water company, Iran water resource Management Company. Department of Energy. Final report, vol. 4, 152p.

  • Peng, C.Y., Lee, K. and Ingersoll, G.M. (2002) An introduction to logistic regression analysis and reporting. Jour. Educat. Res., v.96 (1), pp.3–14.

    Article  Google Scholar 

  • Pohar, M., Blas, M. and Turk, S. (2004) Comparison of Logistic Regression and Linear Discriminant Analysis: A Simulation Study. Metodološki zvezki, v.1(1), pp.143–161.

    Google Scholar 

  • Pradhan, B., Lee S., Mansor S., Buchroithner M.F. and Jallaluddin, N. (2008) Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. Jour. Appld. Remote Sensing, v.2, pp.1–11.

    Google Scholar 

  • Rautela, P. and Lakhera, R.C. (2000) Landslide risk analysis between Giri and Tons Rivers in Himachal Himalaya (India). Internat. Jour. Appld. Earth Observation and Geoinformation (JAG) 2 (3–4), pp.153–160.

    Article  Google Scholar 

  • Rupert, M.G., Cannon, S.H., Gartner, J.E., Michael, J.A. and Helsel, R.D., 2008. Using logistic regression to predict the probability of debris flows in areas burned by wildfires, Southern California, 2003–2006. USA U.S. Department of the interior, U. S. geological Survey, Open-File Report, No. 2008-1370, 9p.

    Google Scholar 

  • Saldivar-Sali, A. and Einstein, H.H. (2007) A Landslide risk Rating System for Baguio, Philippines. Engg. Geol., v.91 (2–4), pp.85–99.

    Article  Google Scholar 

  • Shariat Jafari, M. (1996) Landslide, principles of natural slope stability (in Persian). Soil conservation and watershed management research institute, Tehran, Iran, 218p.

    Google Scholar 

  • Shoaei, Z., Shoaei, G. and Emamjomeh, R. (2005) Interpretation of the mechanism of motion and suggestion of remedial measures using GPS continuous monitoring data In: K. Sassa, H. Fukuoka, Wang, F. and Wang, G., (Eds.), Landslides: Risk analysis and sustainable disaster management. Proc. first general assembly of the international consortium of landslides. Springer, pp.327–335.

    Chapter  Google Scholar 

  • Soeters, R. and van Westen, C.J. (1996) Slope instability recognition, analysis, and zonation. In: A.K. Turner and R.L. Schuster (Eds.), Landslides, Investigation and mitigation, Transportation research board special report 247. National Academy Press Washington D. C., pp.129–177.

    Google Scholar 

  • Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, v.240, pp.1285–1293.

    Article  Google Scholar 

  • Talaei, R., Ghayoumian, J., Shariat Jafari, M. and Aliakbarzadeh, E. (2004) Study on effective factor causing landslide in southwest of Khalkhal region (in Persian). Agriculture research and education organization, Ministry of Jahad-e-Agriculture Tehran, Iran, 153p.

    Google Scholar 

  • Terlien, M.T.J., Asch, T.W.J. and Westen, C.J., (1995) Deterministic modelling in GIS-based landslide hazard assessment. In: A. Carrara and F. Guzzetti (Eds.) Geographical information systems in Assessing Natural Hazards. Kluwer, London, pp.57–77.

    Chapter  Google Scholar 

  • Thomas, G. (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena, v.51(1–3), pp.297–314.

    Google Scholar 

  • Turner, A.K. and Schuster, R.L. (1996) Landslides. Investigation and mitigation, Special Report 247, Transportation Research Board. National Academic Washington, USA. 673p.

    Google Scholar 

  • Uromeihy, A. and Mahdavifar, M.R. (2000) Landslide hazard zonation of the Khorshrostam area, Iran. Bull. Engg. Geol. Environ., v.58, pp.207–213.

    Article  Google Scholar 

  • Van Westen, C.J. (2000) The modeling of landslide hazard using GIS. Surveys in Geophys., v.21(2–3), pp.241–255.

    Article  Google Scholar 

  • Van Westen C.J., Seijmonsbergen, A.C. and Mantovani, F. (1999) Comparing landslide hazard maps. Natural Hazards, v.20, pp.137–158.

    Article  Google Scholar 

  • Van Westen, C.J. (1993) Application of geographic information system to landslide hazard zonation. ITC publication No. 15. International institute for aerospace survey and earth science (ITC), Enschede, Netherlands, 245p.

    Google Scholar 

  • Varnes, D.J. (1984) Landslide hazard zonation: A review of principles and practice. IAEG Commission on landslides and other mass movements. Paris UNESCO Press. 63p.

    Google Scholar 

  • Wang, C., Esaki, T., Xie, M. and Qui, C. (2006) Landslide and debris-flow hazard analysis and prediction using GIS in Minamata-Hougawachi area, Japan. Environ. Geol., v.51, pp.91–102.

    Article  Google Scholar 

  • Wang, H.B. and Sassa, K. (2005) Comparative evaluation of landslide susceptibility in Minamata area, Japan. Environ. Geol., v.47, pp.956–966.

    Article  Google Scholar 

  • Wong, H.N., Lam, K.C. and Ho, K.K.S. (1998) Diagnostic report on the November 1993 natural terrain landslides on Lantau Island. GEO report no 69. The Government of the Hong Kong Special Administrative Region.

    Google Scholar 

  • Wu, W. and Sidle, R.C. (1995) A distributed slope stability model for steep forested basins. Water Resource Res., v.31(8), pp.2097–2110.

    Article  Google Scholar 

  • Wu, S.R., Jin, Y.M., Zhang, Y.S., Shi, J.S., Dong, C., Lei, W.Z., Shi, L., Tan, C.X. and Hu, D.G. (2004) Investigations and assessment of the landslide hazards of Fengdu County in the reservoir region of the Three Gorges project on the Yangtze River. Environ. Geol., v.45, pp.560–566.

    Article  Google Scholar 

  • Yesilnacar, E. and Topal T. (2005) Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engg. Geol., v.79 (3–4), pp.251–261.

    Article  Google Scholar 

  • Yin, K.L., and Yan, T.Z. (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: C. Bonnard (Ed.), Proc. Fifth international symposium on landslides, Lausanne. A. A. Balkema, Rotterdam, Netherlands 2, pp.1269–1272.

    Google Scholar 

  • Zweig, M.H. and Campbell G. (1993) Receiver Operating Characteristic (ROC) Plots: A Fundamental Evaluation Tool in Clinical Medicine. Clinical Chemistry, v.39(4), pp.561–577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Talaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaei, R. Landslide susceptibility zonation mapping using logistic regression and its validation in Hashtchin Region, northwest of Iran. J Geol Soc India 84, 68–86 (2014). https://doi.org/10.1007/s12594-014-0111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0111-5

Keywords

Navigation