Skip to main content
Log in

Global electric circuit parameters and their variability observed over Maitri, Antarctica

  • Published:
Journal of the Geological Society of India

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The global component of fairweather electricity is subject to special attention to watch the solar-terrestrial effects and secular changes in climate. It is generally considered that the diurnal variation of atmospheric electricity parameters, if they are not following the Carnegie pattern, are not representative of the global thunderstorm activity. Some of the results obtained from Maitri (70°45′54″S, 11°44′03″), are discussed here in context with global thunderstorm activity and space weather influences. The diurnal pattern of the Potential Gradient and current density strongly deviate from the Carnegie curve. We have showed that this deviation is not due to the local electrical influence but due to the global thunderstorm activity. During fairweather condition the parameters are representing the global thunderstorm activity and to some extent they respond to the upper atmospheric electro dynamic phenomenon. The mean value of the potential gradient (77.7 V/m) and current density (2.13 pA/m2) well below the expected global mean but close to the value reported from the same location and season in the past years. The mean conductivity, 3.34 × 10−14 mhom−1, is slightly at higher side and they exhibit a different diurnal trend comparing to the past measurements at this location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman, E.J. and Williams, E.R. (1996) Seasonal variation of the global electric circuit. Jour. Geophys Res., v.101,D23, pp.29679–29688.

    Article  Google Scholar 

  • Anil Kumar C.P., Panneerselvam, C., Nair, K.U., Johnson Jeyakumar, H., Selvaraj, C., Gurubaran, S. and Venugopal, C. (2009) Apposite of atmospheric electric parameters with the energy coupling function (μ) during geomagnetic storms at high latitude, Atmospheric Res., v.91, pp.201–205.

    Article  Google Scholar 

  • Aplin, K.L. (2000) Instrumentation for atmospheric ion measurements, PhD Thesis, Department of Meteorology, The University of Reading, UK.

    Google Scholar 

  • Aumento, F. (2001) Radon tides on an active volcanic Island. Presented at 6th International Rare Gas Conference, Cuernavaca, Mexico.

  • Belova, E., Kirkwood, S. and Tammet, H. (2001) The effect of magnetic substorms on near-ground atmospheric current. Ann. Geophys., v.18(12).

  • Burns, G.B., Frank-Kamenetsky, A.V., Troshichev, O.A., Bering, E.A. and Papitashvili, V.O. (1998) The geoelectric field: A link between the troposphere and solar variability. Annals of Glaciology, v.27, pp.651–654.

    Google Scholar 

  • Chalmers, J.A. (1967) Atmospheric Electricity, 2nd ed., Pergamon Press, Oxford.

    Google Scholar 

  • Chubb, J.N. (1990) Two New Designs of “Field Mill” Type Fieldmeters not Requiring Earthing of Rotating Chopper. IEEE Trans. on Industry Applications, v.26, no.6, pp.1178–1181.

    Article  Google Scholar 

  • Cobb, W.E. and Wells, H.J. (1970) The electrical conductivity of oceanicair and its correlation to global atmospheric pollution. Jour. Atmos. Sci., v.27, pp.814–819.

    Article  Google Scholar 

  • Corney, R.C., Burns, G. B., Michael, K., Frank-Kamenetsky, A.V., Troshichev, E.A. Bering, O.A., Papitashvili V.O., Breed, A.M. and Duldig, M.L. (2003) The influence of polar-cap convection on the geoelectric field at Vostok, Antarctica. Jour. Atmos. Solar-Terrestrial Physics, v.65, pp.345–354.

    Article  Google Scholar 

  • Deshpande, C.G. and Kamra, A.K. (2001) Diurnal variations of atmospheric electric field and conductivity at Maitri, Antarctica. Jour. Geophys. Res., v.106(D13), pp.14, 207–14, 218.

    Google Scholar 

  • Dhanorkar, S. and Kamra, A.K. (1997) Calculation of Electrical Conductivity from ion Aerosol balance equation. Jour. Geophys. Res., v.102,D25, pp.30147–30159.

    Article  Google Scholar 

  • Dolezalek, H. (1972) Discussion of the fundamental problem of atmospheric electricity, Pure and Applied Geophys., v.100, pp.8–43.

    Article  Google Scholar 

  • Freier, G.D. (1961) Auroral effects on the Earths Electric field. Jour. Geophy. Res., v.66, pp.2695–2702.

    Article  Google Scholar 

  • Freier, C.D. (1979) Time dependent fields and a new mode of charge generation in severe thunderstorms. Jour. Atmos. Sci., v.36, pp.1967–1975.

    Article  Google Scholar 

  • Harrison, R.G. (2004) The global atmospheric electric circuit and climate. Survey in Geophys., v.25, pp.441–484.

    Article  Google Scholar 

  • Holzworth, R.H. and Mozer, D.F.S. (1979) Direct evidence of solar flare modification of stratospheric electric fields. Jour. Geophys. Res., v.84, pp.363–367.

    Article  Google Scholar 

  • Holzworth, R.H. (1981) High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions. Jour. Atmos. Terr. Phys., v.43, pp.1115–1125.

    Article  Google Scholar 

  • Hoppel, W.A. and Gathman, S.G. (1971) Determination of eddy diffusion coefficients from atmospheric electric measurements. Jour. Geophys. Res., v.76, pp.1467–1971.

    Article  Google Scholar 

  • Hoppel, W.A., Anderson, R.V. and Willett, J.D.J.C. (1986) Atmospheric Electricity in the Planatary Boundary Layer, in Earths Electrical Environment, National Academy Press, Washington D.C.

    Google Scholar 

  • Israelsson, S. (1991) Report series in aerosol science no.19, Dept. of Physics, Helsinki, Finland.

    Google Scholar 

  • Jackman, C.H., Cerninglia, M.C., Nielsen, J.E., Allen, D.J., Zazodny, J.M., Mc Peters, R. D., Douglass, A.R., Rosefield, J.E. and Rood, B. (1995) Two dimensional and three dimensional model simulations, Measurements and interpretations of the influence of the October 1989 Solar proton events on the middle atmosphere. Jour. Geophys. Res., v.100, pp.11641–660.

    Article  Google Scholar 

  • Kamra, A.K., Deshpande, C.G. and Gopalakrishnan, V. (1994) Challenge to the assumption of the unitary diurnal variation of the atmospheric electric field based on observations in the Indian Ocean, Bay of Bengal, and Arabian Sea. Jour. Geophys. Res., v.99(D10), pp. 21043–21050.

    Article  Google Scholar 

  • Kartalev, M.D., Rycroft, M.J, Fuellekrug, M., Papitashvili, V.G. and Keremidarska, V.I. (2006) A possible explanation for the dominant effect of South American thunderstorms in the Carnegie Curve. Jour. Atmos. Solar Terrestrial Physics, v.68, pp.457–468.

    Article  Google Scholar 

  • Kasemir, H.W. and Ruhnke, L.H. (1959) Antenna problems of measurement of the air-Earth current. In: L.G. Smith (Ed.), Recent advances in Atmospheric Electricity. Pergamon, New York, pp.137–147.

    Google Scholar 

  • Lobodin, T.V. and Paramanov, N.A. (1972) Variation of Electric field during aurorae. Pure Appld. Geophys., v.100, pp.167–173.

    Article  Google Scholar 

  • Markson, R. (1978) Solar modulation of atmospheric electrification and possible implications for the Sun-weather relationship. Nature, v.273, pp.103–109.

    Article  Google Scholar 

  • Macgorman, D.R. and Rust, W.D. (1998) The Electrical Nature of Storms. Oxford University Press, New York, 403p.

    Google Scholar 

  • Mohnen, V.A. (1974) Formation, nature and mobility of ions of atmospheric importance. Proc. V International Conference on Atmospheric Electricity, Garmish-Partenkirchen, Germany.

  • Mozer, F.S. and Serlin, R. (1969) Magnetospheric electric field measurements with balloons. Jour. Geophys. Res., v.74, pp.4739–4755.

    Article  Google Scholar 

  • Mozer, F.S. (1971) Balloon measurement of vertical and horizontal atmospheric electric fields. Pure Appld. Geophys., v.84.

  • Muhleisen, R. (1977) The global circuit and its parameters. In: Dolezalek, H., Reiter, R. (Eds.), Electrical Process in Atmospheres. Steinkopff, Darmstadt, p.467.

    Google Scholar 

  • Panneerselvam, C., Nair, K.U. Jeeva, K., Selvaraj, C., Gurubaran, S. and Rajaram, R. (2003) A comparative study of atmospheric Maxwell current and electric field from a low latitude station, Tirunelveli. Earth Planets Space, v.55, pp.697–703.

    Google Scholar 

  • Rajaram, Girija, Arun, T. and Ajay Dhar (2002) Diagnostics of magnetosphere-ionosphere coupling over Indian Antarctic station Maitri, from magnetometer and riometer observations during the optical auroral event of 4–5 March 1999. Adv. Space Res., v.30, no.10, pp.2195–2201.

    Article  Google Scholar 

  • Rajesh Kalra, Ajay Dhar, Unnikrishnan. K, Jeeva. K, Daga. D.M. and Girija Rajaram (1995) Changes in the Auroral Electrojet Currents Inferred from Geomagnetic Field Variations at Maitri and Northern Conjugate Stations. Eleventh Indian Expedition to Antarctica, Scientific Report, 1995 Department of Ocean Development, Technical Publication No.9, pp. 87–101

  • Reddell, B.D., Benbrook J.R., Bering E.A., Cleary E.N. and Few, A.A. (2004) Seasonal variations of atmospheric electricity measured at Amundsen-Scott South Pole station. Jour. Geophys. Res., v.109, pp.A09308.

    Article  Google Scholar 

  • Rostoker, G. (1999) The evolving concept of a magnetospheric substorm. Jour. Atmos. Solar Terestrial Physics, v.61, pp.85–100.

    Article  Google Scholar 

  • Ruhnke, L.H. (1969) Area averaging of atmospheric current. Jour. Geomagn., Geoelectr., v.21, pp.453–462.

    Article  Google Scholar 

  • Ruhnke, L.H. and Michnowski, S. (Eds.) (1991) Proceedings of the International Workshop on Global Atmospheric Electricity Measurements, Madralin, Poland, September 10–16, 1989. Publ. Institute of Geophysics, Polish Academy of Sciences D-35 (238).

  • Rycroft, M.J., Israelsson, S. and Price, C. (2000) The global atmospheric electric circuit, solar activity and climate change. Jour. Atmos. Solar Terrestrial Physics, v.62, pp.1563–1576.

    Article  Google Scholar 

  • Takaji, M. and Iwata, A. (1980) A seasonal effect in diurnal variation of the atmospheric field on the Pacific coast of Japan. Pure Appld. Geophys., v.118(2).

  • Tammet, H., Israelsson, S., Knudsen, K. and Tuomi, T.J. (1996) Effective area of a horizontal long-wire antenna collecting the atmospheric electric vertical current. Jour. Geophys. Res., v.101, pp.29671–29678.

    Article  Google Scholar 

  • Tinsley, B.A., Weiping, L., Rohrbaugh, R.P. and Kirkland, M.W. (1998) South Pole electric field responses to over-head ionospheric convection. Jour. Geophys. Res., v.103(D20), pp.26,137–26,146.

    Article  Google Scholar 

  • Tinsley, B.A. (2000) Influence of solar wind on the global electric circuit and inferred effects on the cloud microphysics, temperature and dynamics in troposphere. Space Sci. Rev., v.94, pp.231–258.

    Article  Google Scholar 

  • Tinsley, B.A. (1996) Correlations of atmospheric dynamics with solar-wind-induced Changes of air-Earth current density into cloud tops. Jour. Geophys. Res, v.101, pp.701–714.

    Article  Google Scholar 

  • Tinsley, B.A and Heelis, R.A. (1993) Correlations of atmospheric dynamics with solar Activity. Evidences for a connection via the solar wind atmospheric Electricity and microphysics. Jour. Geophys. Res., v.98, pp.275–384.

    Article  Google Scholar 

  • Tripathy, S.N. and Harrison, R.G. (2002) Enhancement of contact nucleation by scavenging of charged aerosol particles. Atmos. Res., v.62, pp.57–70.

    Article  Google Scholar 

  • Tuomi, T.J. (1981) Atmospheric electrode effect, approximate theory and winter time observations’. Pure Appl. Geophys., v.119, pp.31–45.

    Article  Google Scholar 

  • Tuomi, T. J. (1982) The atmospheric electrode effect over snow. Jour. Atmos. Terr. Phys., v.44, pp.737–745.

    Article  Google Scholar 

  • Williams, E.R. (1994) Global Circuit response to seasonal variations in Global surface air-temperature. Month Weather Rev., v.122, pp.1917–1929.

    Article  Google Scholar 

  • Williams, E.R. and Satori, G. (2004) Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. JASTP, v.66.

  • Wilson, C.T.R. (1920) Investigation on lightning discharges and on the electric field of thunderstorms. Philos. Trans. Royal Soc. London, v.A221, pp.73–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jeeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeeva, K., Panneerselvam, C., Nair, K.U. et al. Global electric circuit parameters and their variability observed over Maitri, Antarctica. J Geol Soc India 78, 199–210 (2011). https://doi.org/10.1007/s12594-011-0088-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-011-0088-2

Keywords

Navigation