Skip to main content
Log in

Discussion of the fundamental problem of atmospheric electricity

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

The fundamental problem of atmospheric electricity is given by the question to the cause of the electrical current which can be observed everywhere in the terrestrial atmosphere. The ‘classical picture’ which emerged in the 1920's, also called sometimes the ‘spherical capacitor theory’, is shown to be unproven or even disproven by measuring results available until now. The constituting elements of the classical picture are investigated individually, and conclusions are drawn from these considerations. The outcome is that we indeed have a globally controlled current flow vertically through the atmosphere, but that the connection to the thunderstorm activity is tenuous and, in fact, contradicted by proper interpretation of available measurements. On the other hand, thunderstorms do generate electric currents which feed into the global current circuit, and the amount could very well be sufficient, but we do not have sufficient evidence to be able to decide this question.—The author stresses the necessity to improve the measurement techniques and indicates how to do it, he even calls for an abandonment of outmoded methods which are sometimes misleading and in their results often confusing, but nevertheless still practiced at many places. The Atmospheric Electricity Ten-Year Program is discussed as the natural consequence derived from the present situation.

Zusammenfassung

Das grundlegende luftelektrische Problem ist die Frage nach dem Ursprung des elektrischen Stromes der überall in der Atmosphäre beobachtet werden kann. Das ‘klassische Bild’ welches in den 1920er Jahren entstand und auch als Kugelkondensator-Theorie bezeichnet wird, wird als unbewiesen dargestellt, ja, sogar als durch die bisher vorliegenden Messergebnisse widerlegt. Die Elemente, welche zusammen das klassische Bild ausmachen, werden einzeln untersucht, und Schlüsse werden aus diesen Untersuchungen gezogen. Das Ergebnis ist, dass wir tatsächlich einen Vertikalstrom haben, der weltweit gesteuert wird, dass aber die Verbindung zur Weltgewittertätigkeit unsicher ist und, genauer betrachtet, von einer sorgfältigen Auslegung der Messergebnisse widerlegt wird. Auf der anderen Seite erzeugen die Gewitter tatsächlich elektrische Ströme, und es scheint als ob deren Stärke ungefähr passend ist, aber unser Kenntnis reicht nicht aus, um das nachzuweisen.—Verfasser betont die Notwendigkeit, die Messmethoden zu verbessern und er zeigt auf wie, ungefähr, das getan werden kann, er ruft sogar dazu auf, die alten und überholten Methoden abzuschaffen weil sie manchmal falsche Schlüsse hervorrufen und gewöhnlich zu verwirrenden Auslegungen führen, trotzdem aber noch vielerorts angewandt werden. Das luftelektrische Zehnjahresprogramm wird als natürliche Folge der gegenwärtigen Situation dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. V. (1969),Universal diurnal variations in air-earth current density, J. Geophys. Res.74, 1697–1700.

    Google Scholar 

  • Benndorf, H. (1900),Über Störungen des normalen atmosphärischen Potentialgefälles durch Bodenerhebungen, Sitz. Ber. Akad. Wiss. Wien109, 923–940.

    Google Scholar 

  • Benndorf, H. (1906),Über gewisse Störungen des Erdfeldes mit Rücksicht auf die Praxis luftelektrischer Messungen, Sitz. Ber. Akad. Wiss. Wien115, 425–456.

    Google Scholar 

  • Brangin, Yu. A. (1965),Direct measurements of the charged particle concentration in the stratosphere and mesosphere. Kosmicheskie Issledovanya3, 168–171; Cosmic Research3, 105–108.

    Google Scholar 

  • Clark, J. F. (1956),The fair-weather atmospheric electric potential and its gradient. Ph.D. Thesis U. of Md, College Park, Maryland.

    Google Scholar 

  • Clark, J. F. (1958),The fair-weather atmospheric electric potential and its gradient, In: L. G. Smith (ed):Recent Advances in Atmospheric Electricity, Pergamon Press, p. 61–73.

  • Dolezalek, H. (1960a),Zur Berechnung des luftelektrischen Stromkreises, II: Über die Gültigkeit des Ohm'schen Gesetzes in der Atmosphäre, Geofis. pura e applicata45, 273–297 (Engl. translation available).

    Google Scholar 

  • Dolezalek, H. (1960b),Zur Berechnung des luftelektrischen Stromkreises, III: Kontrolle des Ohm'schen Gesetzes durch Messung, Geofisica pura e applicata46, 125–144. (Engl. transl. available).

    Google Scholar 

  • Dolezalek, H. (1961),Gewitterforschung, Umschau in Wissenschaft und Technik61, 14–18, 51–53, 82–84.

    Google Scholar 

  • Dolezalek, H. (1967),Discussion of an Atmospheric Electricity Ten-Year Program, Rpt. D-2, Contract Nonr N00014-66-C0303. National Service for Technical Information, US Dept. Commerce, Springfield, Virginia, 22151, USA; No. AD 692092.

    Google Scholar 

  • Dolezalek, H. (1971),Introductory remarks on the classical picture of atmospheric electricity, Pure & Appl. Geophysics84, 9–12.

    Google Scholar 

  • Dolezalek, H., Anderson, R. V., Kamra, A. K., Kasemir, H. W., Latham, D. J., Markson, R. andOlson, D. E. (1972),Effects of the 7 March 1970 solar eclipse on atmospheric electricity, a contribution to the boundary layer discussion, Archiv. f. Meteorolog., Geophys. Bioklimat. (A)21, 212–245.

    Google Scholar 

  • Evans, W. H. (1969),Electric fields and conductivity in thunderclouds, Journ. Geophys. Res.74, 939–948, 7056–7057.

    Google Scholar 

  • Fischer, H. J. (1962),Die elektrische Spannung zwischen Ionosphäre und Erde, Dissertation Techn. Hochsch. Stuttgart, 124 pp.

  • Fischer, H. J. andMühleisen, R. (1972),Variationen des Ionosphären-Potentials und der Weltgewittertätigkeit im 11 jährigen solaren Zyklus, Meteor. Rdschau25, 6–10.

    Google Scholar 

  • Frisius, J., Heydt, G. andHarth, W. (1969),Observations of parameters characterizing the VLF atmospherics activity as function of the azimuth, Paper represented to Commission VIII, XVI Gen. Assembly URSI, Ottawa, August, 27 pp.

  • Harth, W. (1972),Does a movement of a maximum activity center exist within large thunderstorm areas? Paper presented to NRL Symposium on Long Wave Propagation, Washington, D. C., 25 April.

  • Hepburn, F. (1957),Atmospheric waveform with very low frequency components below one kilohertz, Journ. Atm. Terr. Phys.10, 266–287.

    Google Scholar 

  • Heydt, G., Frisius, J., Volland, H. andHarth, W. (1967),Beobachtung entfernter Gewitterzentren mit dem Atmospherics-Analysator des Heinrich-Hertz Instituts, Kleinheubacher Berichte, Band 12.

  • Hoppel, W. A. (1968),The ions of the atmosphere: their interactions with aerosols and the geoelectric field, Ph. D. Thesis, Univ. Microfilms, Ann Arbor, Michigan 48104, U.S.A.

    Google Scholar 

  • Hoppel, W. A. (1971),Altitude variations in the electric potential resulting from orographic features, Pure and Applied Geophysics84, 57–66.

    Google Scholar 

  • Hughes, H. G. (1967),Nonreciprocal attenuation rates at ELF from ‘slow-tail’ measurements, Journ. Geophys. Res.72, 5383–5388.

    Google Scholar 

  • Imyanitov, I. M., Chubarina, Ye. V. andShvarts, Ya. M. (1971),Elektrichestvo oblakov, Gidrometeorologicheskoye Press, Leningrad, 93 pp. (Electricity of Clouds), NASA Technical Translation, NASA TT F-718, Washington, D.C. 20546, Feb. 1972, 122 pp.

  • Inkov, B. K., Lobodin, T. V. andMakhotkin, L. G. (1971),Investigation of thunderstorm activity by radiotechnical methods, Paper presented to Atmospheric Electricity Symposium (IAMAP) XV General Assembly UGGI, Moskva.

  • Israël, H., undKasemir, H. W. (1949),In welcher Höhe geht der weltweite luftelektrische Ausgleich vor sich? Annales de Géophysique5, 313–324.

    Google Scholar 

  • Israël, H., undKasemir, H. W. (1951),Über die Schirmwirkung von Gebäuden auf die Schwankungen des atmosphärisch-elektrischen Feldes, Annales de Géophysique,7, 63–68.

    Google Scholar 

  • Israël, H. (1961/1972),Atmosphärische Elektrizität, Teil II: Felder, Ladungen, Ströme, Leipzig, X, 503 pp. English Translation expected 1972:Atmospheric Electricity, vol. II, Israel Program for Scientific Translations; Jerusalem, National Tech. Information Service, US Dept. Commerce, Springfield, Va. 22151, USA; TT 67-51394/2.

  • Israël, H. andde Bruijn, P. (1967),The present status of atmospheric electric research, Archiv Meteor. Geophys. Bioklim (A)18, 281–299.

    Google Scholar 

  • Israël, H. (1971),Atmospheric Electricity, vol. I: Fundamentals, Conductivity, Ions, Israel Program for Scientific Translations, Jerusalem; National Technical Information Service, U. S. Dept. Commerce, Springfield, Virginia, 22151, U.S.A.; TT67-51394/1; X, 317 pp.

    Google Scholar 

  • Kasemir, H. W. (1971),Discussion remark, in: Pure and Applied Geophysics,84, 64–65.

  • Kasemir, H. W. (1972),Atmospheric electric measurements in the Arctic and Antarctic, Pure and Applied Geophysics, this issue.

  • Krumm, H. C. (1962),Der weltzeitliche Tagesgang der Gewitterhäufigkeit, Z. f. Geophysik28, 85–104.

    Google Scholar 

  • Latham, J. (1972),The electrification of thunderclouds, proposal for a field research experiment, Manuscript presented to the International Commission on Atmospheric Electricity, 17 p.

  • Loveland, (1972), personal communication (publ. follows).

  • Maeda, H. (1971),Solar and lunar hydrodynamic tides in the Earth's magnetosphere, J. Atm. Terr. Phys.33, 1135–1146.

    Google Scholar 

  • Main Geophysical Observatory (1963–1969), (monthly publication of tables with the titles:)Results of ground observations of atmospheric electricity andThe data of measurement of electric field strength of the atmosphere at various altitudes, issued by Main Geophysical Observatory of the U.S.S.R. Hydrometeorological Service, Leningrad, K-18, U.S.S.R.

  • Mozer, F. S., andSerlin, R. (1969),Magnetospheric electric field measurements with balloons, J. Geophys. Res.74, 4739–4754.

    Google Scholar 

  • Mozer, F. S., andManka, R. H. (1970),Magnetospheric electric field properties deduced from simultaneous balloon flights, Space Sciences Laboratory, University of California, Berkeley, Calif., 94720, USA; July 1970, II, 22 pp and 17 figs.

    Google Scholar 

  • Mozer, F. S. (1971),Balloon measurements of vertical and horizontal atmospheric electric fields, Pure and Applied Geophysics84, 32–45.

    Google Scholar 

  • Mühleisen, R., undFischer, H. J. (1961),Luftelektrische Aerologie, Beiträge zur Physik der Atmosphäre34, 3–14.

    Google Scholar 

  • Mühleisen, R. undFischer, H. J. (1968),Das elektrische Feld in der freien Atmosphäre, Abschlussbericht Teil II. Universität Tübingen, Astronomisches Institut, Weissenau, III, 56 pp.

    Google Scholar 

  • Mühleisen, R. (1971a),New determination of the air-earth current over the ocean and measurement of ionospheric potentials, Pure and Applied Geophysics84, 112–117.

    Google Scholar 

  • Mühleisen, R. (1971a) Paper presented at theSymposium on Electric Fields in Space and Their Relations to Atmospheric Events, XV Gen. Ass. UGGI Moskva, August. Z. f. Geophysik37, 1055–1059.

    Google Scholar 

  • Müller-Hildebrand, D. (1959),Lightning counter and results in Sweden during the thunderstorm period 1958, Teknisk-Vetenskaplig Forskning30, 6.

    Google Scholar 

  • Ogawa, T., Tanaka, Y. andYasuhara, M. (1969),Schumann resonances and world-wide thunderstorm activity, J. Geomag. Geolec (Japan)21, 447–452.

    Google Scholar 

  • Paramonov, N. A. (1971),(Determination of the global diurnal variation of the potential gradient of the electric field in the atmosphere and the vertical conduction current), Meteorologiya i gidrologiya 1971, No. 12, pp. 89–91. English translation: Meteorology and Hydrology, No. 12 pp. 89–94, March. 1972. National Service for Technical Information, US Dept. Commerce, Springfield, Virginia, 22151, USA; No. JRPA 55331.

    Google Scholar 

  • Parkinson, W. C. andTorreson, O. W. (1931),The diurnal variation of the electric potential of the atmosphere over the oceans, UGGI (Sect. Terr. Magn. Elec.) Bull No. 8, pp. 340–341.

    Google Scholar 

  • Pedersen, A. (1966),Measurement of ion concentrations in the D-region of the ionosphere, In:Stoffregen (ed),Rocket measurements for studies of D-region ion concentration and emission from released chemicals in twilight and aurora, Uppsala Jonosfär Observatorium, Report 15, p. 5–107.

  • Riekert, H., Mühleisen, R. andFischer, H. J. (1969),The field distortion of air electric potential gradient radiosondes and the determination of form factors, Pure and Applied Geophysics77, 11–20.

    Google Scholar 

  • Sagalyn, Rita C. andFaucher, G. A. (1954),Aircraft investigation of the large ion content and conductivity of the atmosphere in their relation to meteorological factors, J. Atm. Terr. Phys.5, 253–272.

    Google Scholar 

  • Sao, K., Yamashita, M., Tanahashi, S. andTaylor, W. L. (1970),Genesis of slow tail atmospherics deduced from frequency analysis and association with VLF compoents, Journ. Atm. Terr. Phys.32, 1147–1151.

    Google Scholar 

  • Schuster, B. G. (1970),Detection of tropospheric and stratospheric aerosol layers by optical radar (lidar), Journ. Geophys. Res.75, 3123–3132.

    Google Scholar 

  • Sparrow, J. G., andNey, E. P. (1971),Lightning observations by satellite, Nature232, 540–541.

    Google Scholar 

  • Trent, Eva Mae, andGathman, S. G. (1972),Oceanic thunderstorms, Pure and Applied Geophysics, this issue.

  • Uchikawa, K., (1972),On the seasonal variation of the atmospheric electric elements, Pure and Applied Geophysics, this issue.

  • Volland, H. (1964),A new method for locating thunderstorms and counting their lightning discharges from a single observation station, J. Atm. Terr. Phys.26, 780.

    Google Scholar 

  • Vonnegut, B. (1958), personal communication.

  • Vorpahl, J. A., Sparrow, J. G. andNey, E. P. (1970),Satellite observations of lightning. Science169, 860–862.

    Google Scholar 

  • Whipple, E. C., Jr., (1965),Electricity in the terrestrial atmosphere above the exchange layer, In:S. C. Coroniti (ed.):Problems of Atmospheric and Space Electricity, Amsterdam, Elsevier. pp 123–139 and 160 with figure on p. 147.

    Google Scholar 

  • Whipple, F. J. W. andScrase, F. J. (1936),Point discharge in the electric field of the earth, Geophys. Memoirs, Met. Off, vol. 7, no. 68, 20 pp.

  • World Meteorological Organization, (1953 and 1956),World distribution of thunderstorm days, Part I and II. WMO/OMM No. 21 T.P 6 and T.P 21; 221 and 71 p. plus 18 maps.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolezalek, H. Discussion of the fundamental problem of atmospheric electricity. PAGEOPH 100, 8–43 (1972). https://doi.org/10.1007/BF00880224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00880224

Keywords

Navigation