Skip to main content
Log in

Low-Speed Voltage-Input Tracking Control of a DC-Motor Numerically Modelled by a Dynamical System with Stick-Slip Friction

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Stick-slip vibrations appear during relative motion between contacting surfaces of miscellaneous frictional pairs. They depend on the viscous force, Coulomb force or other velocity-dependent forces. These effects appear in almost all mechanical systems, for instance, in positioning systems like servomechanisms, impulse encoders and stepper motors which operate at, or about zero velocity of relative motion between shafts and sliding bearings. This paper presents numerical modelling of a DC-motor as a dynamical system with stick-slip effect which appears while direction of rotation of its rotor crosses zero velocity speed. These investigations are aimed on some future applications of the control technique serving for explanation of bifurcation phenomena existing in such kind of discontinuous systems. Putting emphasis on nonlinear effects we apply the well-known, but a bit extended sliding-surface method allowing for compensation of frictional effects. A limit cycle on a phase plane as well as time-histories of control inputs and system outputs were obtained using numerical simulations performed in Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams J., Payandeh S.: Methods for low-velocity friction compensation: theory and experimental study. J. Robot. Syst. 13(6), 391–404 (1996)

    Article  Google Scholar 

  2. Awrejcewicz J., Olejnik P.: Stick-slip dynamics of a two-degree-of-freedom system. Int. J. Bifurcation Chaos 13(4), 843–861 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Awrejcewicz, J., Olejnik, P.: Sliding solutions of a simple two degrees-of-freedom dynamical system with friction, Proceedings of 5-th EUROMECH, Nonlinear Dynamics Conference ENOC2005, Eindhoven, August 7–12, 631–640 (2005)

  4. Awrejcewicz J., Olejnik P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. Trans. ASME 58(6), 389–411 (2005)

    Article  Google Scholar 

  5. Cai L., Song G.: Jointstick-slip friction compensation of robot manipulators by using smooth robust controllers. J. Robot. Syst. 11(6), 451–470 (1994)

    Article  MATH  Google Scholar 

  6. Chiason J.: A new approach to dynamic feedback linearization control of an induction motor. IEEE Trans. Automat. Control 43(3), 391–397 (1997)

    Article  Google Scholar 

  7. Chenafa M., Mansouri A., Bouhenna A., Etien E., Belaidi A., Denai M.A.: Global stability of linearizing control with a new robust nonlinear observer of the induction motor. Int. J. Appl. Math. Comput. Sci. 15(2), 235–243 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Driessen B.J., Sadegh N.: Convergence theory for multi-input discrete-time iterative learning control with Coulomb friction, continuous outputs, and input bounds, Int. J. Adapt. Control Signal Process. 18, 457–471 (2004). doi:10.1002/acs.807

    Article  MATH  Google Scholar 

  9. Heckl M.A., Abrahams I.D.: Active control of friction-driven oscillations. J. Sound Vib. 193(1), 417–426 (1996)

    Article  Google Scholar 

  10. Hirschorn R.M., Miller G.: Control of nonlinear systems with friction. IEEE Trans. Control Syst. Technol. 7(5), 588–595 (1999)

    Article  Google Scholar 

  11. Huang S.N., Tan K.K., Lee T.H.: Adaptive friction compensation using neural network approximations. IEEE Trans. Syst. Man. Cybern. 30(4), 551–557 (2000)

    Article  Google Scholar 

  12. Kim Y.H., Lewis F.L.: Optimal design of CMAC neural network controller for robot manipulators. IEEE Trans. Syst. Man. Cybern. 30(1), 22–31 (2000)

    Article  Google Scholar 

  13. Lewis F.L., Abdallah C.T., Dawson D.M.: Control of Robot Manipulators. Macmillan Publishing Company, New York (1993)

    Google Scholar 

  14. Li Z., Wang Q., Gao H.: Friction driven oscillator control by Lyapunov redesign based on delayed state feedback. Acta Mech. Sin. 25, 257–264 (2009). doi:10.1007/s10409-008-0181-y

    Article  MathSciNet  Google Scholar 

  15. Lin C.-L., Huang H.-T.: Linear servo motor control using adaptive neural networks, Proc. Instn. Mech. Eng. 216, 407–427 (2002)

    Google Scholar 

  16. Lubineau D., Dion J.M., Dugard L., Roye D.: Design of an advanced non linear controller for induction motors and experimental validation on an industrial benchmark. EPJ Appl. Phys. 9, 165–175 (2000)

    Article  Google Scholar 

  17. Mansouri A., Chenafa M., Bouhenna A., Etien E.: Powerful nonlinear observer associated with the field-oriented control of the induction motor. Int. J. Appl. Math. Comput. Sci. 14(2), 209–220 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Marino R., Peresada S., Valigi P.: Adaptive input-output linearizing control of induction motors. IEEE Trans. Automat. Control 38(2), 208–221 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Otten G., de Vries T.J.A., van Amerongen J., Rankers A.M., Gaal E.W.: Linear motor motion control using a learning feedforward controller. IEEE/ASME Trans. Mechatron. 2(3), 179–187 (1997)

    Article  Google Scholar 

  20. Slotine J.-J.E., Li W.: On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  21. Song G., Cai L., Wang Y., Longman R.W.: A sliding-mode based smooth adaptive robust controller for friction compensation. Int. J. Robust Nonlinear Control 8, 725–739 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Olejnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olejnik, P., Awrejcewicz, J. Low-Speed Voltage-Input Tracking Control of a DC-Motor Numerically Modelled by a Dynamical System with Stick-Slip Friction. Differ Equ Dyn Syst 21, 3–13 (2013). https://doi.org/10.1007/s12591-012-0114-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-012-0114-x

Keywords

Navigation