Skip to main content
Log in

Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China

  • Paleontology and Paleoecology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Two Permian-Triassic boundary (PTB) sections (Pojue and Dala) are well exposed in an isolated carbonate platform (Napo Platform) on the southwestern margin of the Nanpanjiang Basin, South China. These sections provide an insight into the transition across the PTB and a detailed investigation of the conodont biostratigraphy and inorganic carbon isotopes is presented. The PTB at the Pojue Section is placed at the base of Bed 10B (a dolomitized mudstone found below a microbialite horizon), defined by the first occurrence of Hindeodus parvus. At the Dala Section, four conodont zones occur. They are, in ascending order, the Hindeodus parvus Zone, Isarcicella staeschei Zone, Isarcicella isarcica Zone and Clarkina planata Zone. Comparison with the Pojue Section suggests the PTB at Dala also occurs at the base of dolomitized mudstone below a microbialite horizon, although the first occurrence of Hindeodus parvus is near the top of a microbialite bed: an occurrence that is also seen in other platform sections. The succeeding microbialite beds developed during the ongoing PTB mass extinction phase. This time was characterized by low carbon isotope values, and a microbialite ecosystem that provided a refuge for selected groups (bivalves, ostracods and microgastropods) that were likely tolerant of extremely high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Bai, R. Y., Dai, X., Song, H. J., 2017. Conodont and Ammonoid Biostratigraphies around the Permian-Triassic Boundary from Jianzishan of South China. Journal of Earth Science, 28(4): 595–613. https://doi.org/10.1007/s12583-017-0754-4

    Article  Google Scholar 

  • Baresel, B., Bucher, H., Bagherpour, B., et al., 2017. Timing of Global Regression and Microbial Bloom Linked with the Permian-Triassic Boundary Mass Extinction: Implications for Driving Mechanisms. Scientific Reports, 7(1): 43630. https://doi.org/10.1038/srep43630

    Article  Google Scholar 

  • Baud, A., Richoz, S., Pruss, S., 2007. The Lower Triassic Anachronistic Carbonate Facies in Space and Time. Global and Planetary Change, 55(1/2/3): 81–89. https://doi.org/10.1016/j.gloplacha.2006.06.008

    Article  Google Scholar 

  • Brand, U., Blamey, N., Garbelli, C., et al., 2016. Methane Hydrate: Killer Cause of Earth’s Greatest Mass Extinction. Palaeoworld, 25(4): 496–507. https://doi.org/10.1016/j.palwor.2016.06.002

    Article  Google Scholar 

  • Brosse, M., Bucher, H., Bagherpour, B., et al., 2015. Conodonts from the Early Triassic Microbialite of Guangxi (South China): Implications for the Definition of the Base of the Triassic System. Palaeontology, 58(3): 563–584. https://doi.org/10.1111/pala.12162

    Article  Google Scholar 

  • Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High-Precision Timeline for Earth’s Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316–3321. https://doi.org/10.1073/pnas.1317692111

    Article  Google Scholar 

  • Chen, B., Joachimski, M. M., Wang, X. D., et al., 2016. Ice Volume and Paleoclimate History of the Late Paleozoic Ice Age from Conodont Apatite Oxygen Isotopes from Naqing (Guizhou, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 151–161. https://doi.org/10.1016/j.palaeo.2016.01.002

    Article  Google Scholar 

  • Chen, J., Beatty, T. W., Henderson, C. M., et al., 2009. Conodont Biostratigraphy across the Permian-Triassic Boundary at the Dawen Section, Great Bank of Guizhou, Guizhou Province, South China: Implications for the Late Permian Extinction and Correlation with Meishan. Journal of Asian Earth Sciences, 36(6): 442–458. https://doi.org/10.1016/j.jseaes.2008.08.002

    Article  Google Scholar 

  • Chen, Z.-Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedimentary Records of the Permian-Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth-Science Reviews, 149: 67–107. https://doi.org/10.1016/j.earscirev.2014.10.005

    Article  Google Scholar 

  • Clark, D. L., 1959. Conodonts from the Triassic of Nevada and Utah. Journal of Paleontology, 33(2): 305–312

    Google Scholar 

  • Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo-Triassic Mass Extinction. Science, 348(6231): 229–232. https://doi.org/10.1126/science.aaa0193

    Article  Google Scholar 

  • Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30–52. https://doi.org/10.1016/j.palaeo.2017.03.014

    Article  Google Scholar 

  • Ezaki, Y., Liu, J., Nagano, T., et al., 2008. Geobiological Aspects of the Earliest Triassic Microbialites along the Southern Periphery of the Tropical Yangtze Platform: Initiation and Cessation of a Microbial Regime. PALAIOS, 23(6): 356–369. https://doi.org/10.2110/palo.2007.p07-035r

    Article  Google Scholar 

  • Forel, M. B., Crasquin, S., Kershaw, S., et al., 2013. In the Aftermath of the End-Permian Extinction: The Microbialite Refuge?. Terra Nova, 25(2): 137–143. https://doi.org/10.1111/ter.12017

    Article  Google Scholar 

  • Foster, W. J., Danise, S., Price, G. D., et al., 2017. Subsequent Biotic Crises Delayed Marine Recovery Following the Late Permian Mass Extinction Event in Northern Italy. PLOS ONE, 12(3): e0172321. https://doi.org/10.1371/journal.pone.0172321

    Article  Google Scholar 

  • Grasby, S. E., Beauchamp, B., Knies, J., 2016. Early Triassic Productivity Crises Delayed Recovery from World’s Worst Mass Extinction. Geology, 44(9): 779–782. https://doi.org/10.1130/g38141.1

    Article  Google Scholar 

  • Hautmann, M., Bucher, H., Brühwiler, T., et al., 2011. An Unusually Diverse Mollusc Fauna from the Earliest Triassic of South China and Its Implications for Benthic Recovery after the End-Permian Biotic Crisis. Geobios, 44(1): 71–85. https://doi.org/10.1016/j.geobios.2010.07.004

    Article  Google Scholar 

  • He, W. H., Shi, G. R., Twitchett, R. J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2): 123–138. https://doi.org/10.1111/gbi.12119

    Article  Google Scholar 

  • Huckriede, R., 1958. Die Conodonten Der Mediterranen Trias und Ihr Stratigraphischer Wert. Paläontologische Zeitschrift, 32(3/4): 141–175

    Article  Google Scholar 

  • Jiang, H. S., Aldridge, R. J., Lai, X. L., et al., 2011. Phylogeny of the Conodont Genera Hindeodus and Isarcicella across the Permian-Triassic Boundary. Lethaia, 44(4): 374–382. https://doi.org/10.1111/j.1502-3931.2010.00248.x

    Article  Google Scholar 

  • Jiang, H. S., Joachimski, M. M., Wignall, P. B., et al., 2015. A Delayed End-Permian Extinction in Deep-Water Locations and Its Relationship to Temperature Trends (Bianyang, Guizhou Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 690–695. https://doi.org/10.1016/j.palaeo.2015.10.002

    Article  Google Scholar 

  • Jiang, H. S., Lai, X. L., Luo, G. M., et al., 2007. Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global and Planetary Change, 55(1/2/3): 39–55. https://doi.org/10.1016/j.gloplacha.2006.06.007

    Article  Google Scholar 

  • Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian-Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End-Permian Mass Extinction. Journal of Earth Science, 25(3): 413–430. https://doi.org/10.1007/s12583-014-0444-4

    Article  Google Scholar 

  • Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195–198. https://doi.org/10.1130/g32707.1

    Article  Google Scholar 

  • Kershaw, S., Collin, P. Y., Crasquin, S., 2016. Comment to Lehrmann et al. New Sections and Observations from the Nanpanjiang Basin, South China. PALAIOS, 31(3): 111–117. https://doi.org/10.2110/palo.2015.093

    Article  Google Scholar 

  • Kozur, H., 1995. Some Remarks to the Conodonts Hindeodus and Isarcicella in the Latest Permian and Earliest Triassic. Palaeoworld, 6: 64–77

    Google Scholar 

  • Kozur, H., 1996. The Conodonts Hindeodus, Isarcicella, Sweetohindeodus in the Uppermost Permian and Lowermost Triassic. Geologia Croatica, 49(1): 81–116

    Google Scholar 

  • Kozur, H., Mostler, H., Rahimi-Yazd, A., 1975. Beiträge zur Mikrofauna Permotriadischer Schichtfolgen Teil II: Neue Conodonten aus dem Oberperm und der Basalen Trias von Nord- und Zentraliran. Geol. Palaont. Mitt. Innsbruck, 5(3): 1–23

    Google Scholar 

  • Kozur, H., Pjatakova, M., 1976. Die Conodontenart Anchignathodus parvus n.sp., eine wichtige Leiform der basalen Trias. Proceedings Koninkl Nederland Akademie van Wetenschappen, Series B, 79: 123–128

    Google Scholar 

  • Krull, E. S., Lehrmann, D. J., Druke, D., et al., 2004. Stable Carbon Isotope Stratigraphy across the Permian-Triassic Boundary in Shallow Marine Carbonate Platforms, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4): 297–315. https://doi.org/10.1016/s0031-0182(03)00732-6

    Article  Google Scholar 

  • Lehrmann, D. J., Bentz, J. M., Wood, T., et al., 2015. Environmental Controls on the Genesis of Marine Microbialites and Dissolution Surface Associated with the End-Permian Mass Extinction: New Sections and Observations from the Nanpanjiang Basin, South China. PALAIOS, 30(7): 529–552. https://doi.org/10.2110/palo.2014.088

    Article  Google Scholar 

  • Lehrmann, D. J., Minzoni, M., Li, X. W., et al., 2012. Lower Triassic Oolites of the Nanpanjiang Basin, South China: Facies Architecture, Giant Ooids, and Diagenesis—Implications for Hydrocarbon Reservoirs. AAPG Bulletin, 96(8): 1389–1414. https://doi.org/10.1306/01231211148

    Article  Google Scholar 

  • Lehrmann, D. J., Payne, J. L., Felix, S. V., et al., 2003. Permian-Triassic Boundary Sections from Shallow-Marine Carbonate Platforms of the Nanpanjiang Basin, South China: Implications for Oceanic Conditions Associated with the End-Permian Extinction and Its Aftermath. PALAIOS, 18(2): 138–152. https://doi.org/10.1669/0883-1351(2003)18<138:pbsfsc>2.0.co;2

    Article  Google Scholar 

  • Li, F., Yan, J. X., Algeo, T., et al., 2013. Paleoceanographic Conditions Following the End-Permian Mass Extinction Recorded by Giant Ooids (Moyang, South China). Global and Planetary Change, 105: 102–120. https://doi.org/10.1016/j.gloplacha.2011.09.009

    Article  Google Scholar 

  • Li, F., Yan, J. X., Chen, Z. Q., et al., 2015. Global Oolite Deposits Across the Permian-Triassic Boundary: A Synthesis and Implications for Palaeoceanography Immediately after the End-Permian Biocrisis. Earth-Science Reviews, 149: 163–180. https://doi.org/10.1016/j.earscirev.2014.12.006

    Article  Google Scholar 

  • Li, Z. S., Zhan L. P., Dai, J. Y., et al., 1989. Study on the Permian-Triassic Biostratigraphy and Event Stratigraphy of Northern Sichuan and Southern Shaanxi. Geological Memoirs Vol. 9. Geological Publishing House, Beijing. 448 (in Chinese)

    Google Scholar 

  • Liu, J. B., Ezaki, Y., Yang, S. R., et al., 2007. Age and Sedimentology of Microbialites after the End-Permian Mass Extinction in Luodian, Guizhou Province. Journal of Palaeogeography, 9(5): 473–486 (in Chinese with English Abstract)

    Google Scholar 

  • Luo, G. M., Kump, L. R., Wang, Y. B., et al., 2010. Isotopic Evidence for an Anomalously Low Oceanic Sulfate Concentration Following End-Permian Mass Extinction. Earth and Planetary Science Letters, 300(1/2): 101–111. https://doi.org/10.1016/j.epsl.2010.09.041

    Article  Google Scholar 

  • Nicoll, R. S., Metcalfe, I., Wang, C. Y., 2002. New Species of the Conodont Genus Hindeodus and the Conodont Biostratigraphy of the Permian-Triassic Boundary Interval. Journal of Asian Earth Sciences, 20(6): 609–631. https://doi.org/10.1016/s1367-9120(02)00021-4

    Article  Google Scholar 

  • Orchard, M. J., Nassichuk, W. W., Rui, L., 1994. Conodonts from the Lower Griesbachian Otoceras Latilobatum Bed of Selong, Tibet and the Position of the Permian-Triassic boundary. Memoir-Canadian Society of Petroleum Geologists, 17: 823–843

    Google Scholar 

  • Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events. Geological Society of America Bulletin, 119(7/8): 771–784. https://doi.org/10.1130/b26091.1

    Article  Google Scholar 

  • Perri, M. C., Farabegoli, F., 2003. Conodonts across the Permian-Triassic Boundary in the Southern Alps. In: Mawson, R., Talent, J. A., eds., Contributions to the Second Australian Conodont Symposium. Courier Forschungsinstitut Senckenberg Series, 281–313

  • Regional Geological Survey Team of the Guangxi Zhuang Autonomous Region Geological Bureau, 1974. 1: 20 000 Regional Geological Survey Report of the People’s Republic of China: Baise Map and Delong Map, Geological Part. Guangxi Zhuang Autonomous Region Geological Bureau, Yishan. 1–188 (in Chinese)

    Google Scholar 

  • Shen, S. Z., Cao, C. Q., Zhang, H., et al., 2013. High-Resolution δ13Ccarb Chemostratigraphy from Latest Guadalupian through Earliest Triassic in South China and Iran. Earth and Planetary Science Letters, 375: 156–165. https://doi.org/10.1016/j.epsl.2013.05.020

    Article  Google Scholar 

  • Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334(6061): 1367–1372. https://doi.org/10.1126/science.1213454

    Article  Google Scholar 

  • Shen, S. Z., Ramezani, J., Chen, J., et al., 2018. A Sudden End-Permian Mass Extinction in South China. GSA Bulletin.https://doi.org/10.1130/b31909.1

  • Song, H. J., Tong, J. N., Xiong, Y. L., et al., 2012. The Large Increase of δ13Ccarb-Depth Gradient and the End-Permian Mass Extinction. Science China Earth Sciences, 55(7): 1101–1109. https://doi.org/10.1007/s11430-012-4416-1

    Article  Google Scholar 

  • Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4(1): 4132. https://doi.org/10.1038/srep04132

    Article  Google Scholar 

  • Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 6(1): 52–56. https://doi.org/10.1038/ngeo1649

    Article  Google Scholar 

  • Sun, H., Xiao, Y. L., Gao, Y. J., et al., 2018. Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences, 115(15): 3782–3787. https://doi.org/10.1073/pnas.1711862115

    Article  Google Scholar 

  • Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366–370. https://doi.org/10.1126/science.1224126

    Article  Google Scholar 

  • Tian, L., Bottjer, D. J., Tong, J. N., et al., 2015. Distribution and Size Variation of Ooids in the Aftermath of the Permian-Triassic Mass Extinction. PALAIOS, 30(9): 714–727. https://doi.org/10.2110/palo.2014.110

    Article  Google Scholar 

  • Wang, C. Y., 1996. Conodont Evolutionary Lineage and Zonation for the Latest Permian and the Earliest Triassic. Permophiles, 29: 30–37

    Google Scholar 

  • Wang, L. N., Wignall, P. B., Wang, Y. B., et al., 2016. Depositional Conditions and Revised Age of the Permo-Triassic Microbialites at Gaohua Section, Cili County (Hunan Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 443: 156–166. https://doi.org/10.1016/j.palaeo.2015.11.032

    Article  Google Scholar 

  • Wang, Y. B., Meng, Z., Liao, W., et al., 2011. Shallow Marine Ecosystem Feedback to the Permian/Triassic Mass Extinction. Frontiers of Earth Science, 5(1): 14–22. https://doi.org/10.1007/s11707-011-0164-3

    Article  Google Scholar 

  • Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End-Permian Mass Extinction. Paleobiology, 40(1): 113–129. https://doi.org/10.1666/13022

    Article  Google Scholar 

  • Wignall, P. B., 2015. The Worst of Times: How Life on Earth Survived Eighty Million Years of Extinctions. Princeton University Press, Princeton. 224. https://doi.org/10.1515/9781400874248

    Book  Google Scholar 

  • Wignall, P. B., Hallam, A., 1996. Facies Change and the End-Permian Mass Extinction in S.E. Sichuan, China. PALAIOS, 11(6): 587–596. https://doi.org/10.2307/3515193

    Article  Google Scholar 

  • Wignall, P. B., Kershaw, S., Collin, P. Y., et al., 2009. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events: Comment. Geological Society of America Bulletin, 121(5/6): 954–956. https://doi.org/10.1130/b26424.1

    Article  Google Scholar 

  • Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4(1): 2452. https://doi.org/10.1038/ncomms3452

    Article  Google Scholar 

  • Xiang, L., Schoepfer, S. D., Zhang, H., et al., 2016. Oceanic Redox Evolution across the End-Permian Mass Extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 59–71. https://doi.org/10.1016/j.palaeo.2015.10.046

    Article  Google Scholar 

  • Yan, C. B., Wang, L. N., Jiang, H. S., et al., 2013. Uppermost Permian to Lower Triassic Conodonts at Bianyang Section, Guihzou Province, South China. PALAIOS, 28(8): 509–522. https://doi.org/10.2110/palo.2012.p12-077r

    Article  Google Scholar 

  • Yang, B., Lai, X. L., Wignall, P. B., et al., 2012. A Newly Discovered Earliest Triassic Chert at Gaimao Section, Guizhou, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 344/345: 69–77. https://doi.org/10.1016/j.palaeo.2012.05.019

    Article  Google Scholar 

  • Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End-Permian Regression in South China and Its Implication on Mass Extinction. Earth-Science Reviews, 137: 19–33. https://doi.org/10.1016/j.earscirev.2013.06.003

    Article  Google Scholar 

  • Yin, H. F., Xie, S. C., Luo, G. M., et al., 2012. Two Episodes of Environmental Change at the Permian-Triassic Boundary of the GSSP Section Meishan. Earth-Science Reviews, 115(3): 163–172. https://doi.org/10.1016/j.earscirev.2012.08.006

    Article  Google Scholar 

  • Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102–114

    Google Scholar 

  • Yuan, J. L., Jiang, H. S., Wang, D. C., 2015. LST: A New Inorganic Heavy Liquid Used in Conodont Separation. Geological Science and Technology Information, 34(5): 225–230 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, K. X., Tong, J. N., Lai, X. L., et al., 2009. Progress on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 48(3): 474–486 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, N., Jiang, H. S., Zhong, W. L., et al., 2014. Conodont Biostratigraphy across the Permian-Triassic Boundary at the Xinmin Section, Guizhou, South China. Journal of Earth Science, 25(5): 779–786. https://doi.org/10.1007/s12583-014-0472-0

    Article  Google Scholar 

  • Zhao, X. M., Tong, J. N., Yao, H. Z., et al., 2008. Anachronistic Facies in the Lower Triassic of South China and Their Implications to the Ecosystems during the Recovery Time. Science in China Series D: Earth Sciences, 51(11): 1646–1657. https://doi.org/10.1007/s11430-008-0128-y

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41572324), the Special Project on Basic Work of Science and Technology from the National Ministry of Science and Technology of China (No. 2015FY310100-11), and the China Geological Survey (No. DD20160120-04). SEM pictures and carbon isotopes data were undertaken at the State Key Laboratory of Biogeology and Environmental Geology (China). We thank Suxin Zhang, Yuheng Fang for their assistance in SEM. Thanks also go to Huyue Song for the helps in processing the carbon isotopes data. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0884-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishui Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ye, Q., Jiang, H. et al. Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China. J. Earth Sci. 30, 244–257 (2019). https://doi.org/10.1007/s12583-018-0884-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0884-3

Key Words

Navigation