Skip to main content
Log in

Relations of Uranium Enrichment and Carbonaceous Debris within the Daying Uranium Deposit, Northern Ordos Basin

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Carbonaceous debris (CD) is widely distributed in the sandstone of the Daying Uranium Deposit, northern Ordos Basin, and coexists with uranium minerals, which provides a favorable case for studying their relationship. Vitrinite reflectance (VR), macerals, moisture, volatile matter, ash, total sulfur (St) and uranium concentration of CD within the sandstone were studied. The results show that VR ranges from 0.372 %Ro to 0.510 %Ro with an average value of 0.438 %Ro, indicating that CD is in the stage of lignite. The contents of vitrinite (V), inertinite (I) and minerals range from 83.18%–99.48%, 0–7.70%, and 0.34%–15.72%, respectively, with the corresponding average value of 95.51%, 1.34%, and 3.15%, respectively which indicates that V is the major maceral. Moisture on air dried basis (Mad), volatile matter yield on dry, ash-free basis (Vdaf), ash yield on dried basis (Ad) and St mostly range from 7.95%–16.09%, 44.70%–66.54%, 4.84%–26.24% and 0.24%–1.12%, respectively, while their average values are 12.43%, 53.41%, 16.57% and 0.77%, respectively. It suggests that CD is of medium-high moisture, super-high volatile matter, low-medium ash and low sulfur. Uranium concentration ranges from 29 ppm to 92 ppm with an average value of 50 ppm, and uranium concentration increases with the decreased distance to CD. On the whole, Mad and Vdaf decrease with increasing burial depth, which indicates that CD experienced the burial metamorphism. However, Mad and Vdaf obviously decrease in uranium-rich areas whereas Ad and St noticeably increase. Comprehensive studies suggest that there is a certain relationship between uranium enrichment and CD. CD in the stage of lignite helps the adsorption of uranium. On one hand, radioactivity uranium enrichment makes organic matter maturation increase with a decrease in moisture and volatile matter. On the other hand, an increase in organic matter maturation, caused by radioactivity uranium enrichment, results in an increase in uranium minerals, which is instructive in the study of regional uranium mineralization and metallogenic regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Bazylinski, D. A., Frankel, R. B., 2003. Biologically Controlled Mineralization in Prokaryotes. In: Dove, P. M., de Yoreo, J. J., Weiner, S., eds., Biomineralization. Mineralogical Society of America, Washington, 2: 217–247

    Google Scholar 

  • Bone, S. E., Dynes, J. J., Cliff, J., et al., 2017. Uranium(IV) Adsorption by Natural Organic Matter in Anoxic Sediments. Proceedings of the National Academy of Sciences, 114(4): 711–716

    Article  Google Scholar 

  • Bordelet, G., Beaucaire, C., Phrommavanh, V., et al., 2013. Sorption Properties of Peat for U(VI) and 226Ra in U Mining Areas. Procedia Earth and Planetary Science, 7: 85–88. https://doi.org/10.1016/j.proeps.2013.03.121

    Article  Google Scholar 

  • Classification for Quality of Coal, 2004. National Standard of P. R. China: GB/T 15224.1–2004 (in Chinese)

    Google Scholar 

  • Coalfield Staff Room of Wuhan Geological Institute, 1982. Coalfield Geology: Volume 1. Geological Publishing House, Beijing. 280 (in Chinese)

    Google Scholar 

  • Court, R. W., Sephton, M. A., Parnell, J., et al., 2006. The Alteration of Organic Matter in Response to Ionising Irradiation: Chemical Trends and Implications for Extraterrestrial Sample Analysis. Geochimica et Cosmochimica Acta, 70(4): 1020–1039. https://doi.org/10.1016/j.gca.2005.10.017

    Article  Google Scholar 

  • Cumberland, S. A., Douglas, G., Grice, K., et al., 2016. Uranium Mobility in Organic Matter-Rich Sediments: A Review of Geological and Geochemical Processes. Earth-Science Reviews, 159: 160–185. https://doi.org/10.1016/j.earscirev.2016.05.010

    Article  Google Scholar 

  • Cun, X. N., Wu, B. L., Zhang, H. S., et al., 2016. Study on Uranium Occurrence State of Daying Sandstone-Type Uranium Deposits in Ordos Basin. Northwester Geology, 49: 198–212 (in Chinese with English Abstract)

    Google Scholar 

  • Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. Economic Geology, 105(3): 553–569. https://doi.org/10.2113/gsecongeo.105.3.553

    Article  Google Scholar 

  • Dai, S. F., Seredin, V. V., Ward, C. R., et al., 2015a. Enrichment of U-Se-Mo-Re-V in Coals Preserved within Marine Carbonate Successions: Geochemical and Mineralogical Data from the Late Permian Guiding Coalfield, Guizhou, China. Mineralium Deposita, 50(2): 159–186. https://doi.org/10.1007/s00126-014-0528-1

    Article  Google Scholar 

  • Dai, S. F., Yang, J. Y., Ward, C. R., et al., 2015b. Geochemical and Mineralogical Evidence for a Coal-Hosted Uranium Deposit in the Yili Basin, Xinjiang, Northwestern China. Ore Geology Reviews, 70: 1–30. https://doi.org/10.1016/j.oregeorev.2015.03.010

    Article  Google Scholar 

  • Deng, J., Wang, Q. F., Gao, B. F., et al., 2006. Distribution and Tectonic Background of Various Energy Resources in Ordos Basin. Earth Science—Journal of China University of Geosciences, 31(3): 330–336 (in Chinese with English Abstract)

    Google Scholar 

  • Douglas, G. B., Butt, C. R. M., Gray, D. J., 2011. Geology, Geochemistry and Mineralogy of the Lignite-Hosted Ambassador Palaeochannel Uranium and Multi-Element Deposit, Gunbarrel Basin, Western Australia. Mineralium Deposita, 46(7): 761–787. https://doi.org/10.1007/s00126-011-0349-4

    Article  Google Scholar 

  • Drennan, G. R., Robb, L. J., 2006. The Nature of Hydrocarbons and Related Fluids in the Witwatersrand Basin, South Africa: Their Role in Metal Redistribution. Geol. Soc. Am. Spec. Pap., 405: 353–385. https://doi.org/10.1130/2006.2405(18)

    Google Scholar 

  • Du, W., Jiang, Z. X., Li, Q., et al., 2016. Sedimentary Characterization of the Upper Paleozoic Coal-Bearing Tight Sand Strata, Daniudi Gas Field, Ordos Basin, China. Journal of Earth Science, 27(5): 823–834. https://doi.org/10.1007/s12583-016-0705-5

    Article  Google Scholar 

  • Du, W., Jiang, Z. X., Zhang, Y., et al., 2013. Sequence Stratigraphy and Sedimentary Facies in the Lower Member of the Permian Shanxi Formation, Northeastern Ordos Basin, China. Journal of Earth Science, 24(1): 75–88. https://doi.org/10.1007/s12583-013-0308-3

    Article  Google Scholar 

  • Gauthier-Lafaye, F., Weber, F., 1993. Uranium-Hydrocarbon Association in Francevillian Uranium Ore Deposits, Lower Proterozoic of Gabon. In: Parnell, J., Kucha, H., Landais, P., eds., Bitumens in Ore Deposits. Special Publication of the Society for Geology Applied to Mineral Deposits, Geneva, Switzerland, 9: 276–286. https://doi.org/10.1007/978-3-642-85806-2_15

    Google Scholar 

  • Gentry, R. V., Christie, W. H., Smith, D. H., et al., 1976. Radiohalos in Coalified Wood: New Evidence Relating to the Time of Uranium Introduction and Coalification. Science, 194(4262): 315–318. https://doi.org/10.1126/science.194.4262.315

    Article  Google Scholar 

  • Giordano, T. H., 2000. Organic Matter as a Transport Agent in Ore-Forming Systems. In: Giordano, T. H., Kettler, R. M., Wood, S. A., eds., Ore Genesis and Exploration: The Roles of Organic Matter. Reviews in Economic Geology, Littleton, CO. 133–155

    Google Scholar 

  • Gluskoter, H. J., Ruch, R. R., Miller, W. G., et al., 1977. Trace Elements in Coal: Occurrence and Distribution. Illionois State Geological Suevey, 154

    Google Scholar 

  • Greenwood, P. F., Brocks, J. J., Grice, K., et al., 2013. Organic Geochemistry and Mineralogy. I. Characterisation of Organic Matter Associated with Metal Deposits. Ore Geology Reviews, 50(2): 1–27. https://doi.org/10.1016/j.oregeorev.2012.10.004

    Google Scholar 

  • Günther, A., Steudtner, R., Schmeide, K., et al., 2011. Luminescence Properties of Uranium(VI) Citrate and Uranium(VI) Oxalate Species and Their Application in the Determination of Complex Formation Constants. Radiochimica Acta, 99(9): 535–542. https://doi.org/10.1524/ract.2011.1847

    Article  Google Scholar 

  • Haferburg, G., Kothe, E., 2007. Microbes and Metals: Interactions in the Environment. Journal of Basic Microbiology, 47(6): 453–467. https://doi.org/10.1002/jobm.200700275

    Article  Google Scholar 

  • Harshman, E. N., 1972. Geology and Uranium Deposits, Shirley Basin Area, Wyoming. U. S. Geological Survey Professional Paper, 745: 82

    Google Scholar 

  • Havelcová, M., Machovič, V., Mizera, J., et al., 2014. A Multi-Instrumental Geochemical Study of Anomalous Uranium Enrichment in Coal. Journal of Environmental Radioactivity, 137: 52–63. https://doi.org/10.1016/j.jenvrad.2014.06.015

    Article  Google Scholar 

  • Janot, N., Lezama Pacheco, J. S., Don, Q. P., et al., 2016. Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry. Environmental Science & Technology, 50(1): 46–53

    Article  Google Scholar 

  • Jaraula, C. M. B., Schwark, L., Moreau, X., et al., 2015. Radiolytic Alteration of Biopolymers in the Mulga Rock (Australia) Uranium Deposit. Applied Geochemistry, 52: 97–108. https://doi.org/10.1016/j.apgeochem.2014.11.012

    Article  Google Scholar 

  • Jiao, Y. Q., Chen, A. P., Wang, M. F., et al., 2005a. Genetic Analysis of the Bottom Sandstone of Zhiluo Formation, Northeastern Ordos Basin: Predictive Base of Spatial Orientation of Sandstone-Type Uranium Deposit. Acta Sedimentologica Sinica, 23(3): 371–379 (in Chinese with English Abstract)

    Google Scholar 

  • Jiao, Y. Q., Chen, A. P., Yang, Q., et al., 2005b. Sand Body Heterogeneity: One of the Key Factors of Uranium Metallogenesis in Ordos Basin. Uranium Geology, 21: 8–15 (in Chinese with English Abstract)

    Google Scholar 

  • Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2016. The Relationship between Jurassic Coal Measures and Sandstone-Type Uranium Deposits in the Northeastern Ordos Basin, China. Acta Geologica Sinica--English Edition, 90(6): 2117–2132. https://doi.org/10.1111/1755-6724.13026

    Article  Google Scholar 

  • Jiao, Y. Q., Wu, L. Q., Yang, S. K., eds., 2006. Uranium Reservoir Sedimentology: Exploration and Development of the Sandstone-type Uranium Deposits. Geological Press, Beijing. 331 (in Chinese)

    Google Scholar 

  • Landais, P., 1996. Organic Geochemistry of Sedimentary Uranium Ore Deposits. Ore Geology Reviews, 11(1/2/3): 33–51. https://doi.org/10.1016/0169-1368(95)00014-3

    Google Scholar 

  • Landais, P., Dubessy, J., Poty, B., et al., 1990. Three Examples Illustrating the Analysis of Organic Matter Associated with Uranium Ores. Organic Geochemistry, 16(1/2/3): 601–608. https://doi.org/10.1016/0146-6380(90)90073-9

    Google Scholar 

  • Leventhal, J. S., Daws, T. A., Frye, J. S., 1986. Organic Geochemical Analysis of Sedimentary Organic Matter Associated with Uranium. Applied Geochemistry, 1(2): 241–247. https://doi.org/10.1016/0883-2927(86)90008-9

    Article  Google Scholar 

  • Li, X. L., Ding, C. C., Liao, J. L., et al., 2017. Microbial Reduction of Uranium (VI) by Bacillus Sp. Dwc-2: A Macroscopic and Spectroscopic Study. Journal of Environmental Sciences, 53: 9–15

    Google Scholar 

  • Li, Y. H., Sun, Y. Z., Zhao, C. L., et al., 2009. Relationship between Uranium Metallgenesis and Organic Matter at Northeast of Ordos Basin. Journal of Hebei University of Engineering (Natural Science Edition), 26(4): 67–70 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Z. Y., Fang, X. H., Chen, A. P., et al., 2007. Origin of Gray-Green Sandstone in Ore Bed of Sandstone Type Uranium Deposit in North Ordos Basin. Science in China Series D: Earth Sciences, 50(S2): 165–173. https://doi.org/10.1007/s11430-007-6005-2

    Google Scholar 

  • Liu, D. Y., Zhao, Y. C., Zhang, J. Y., et al., 2016. Research Progress of Uranium in Coal and Its Migration Behavior during Coal Combustion. Coal Science and Technology, 44(4): 175–181 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Z. Y., Zhang, S. L., Tang, Y. H., et al., 1980. Relationships among Uranium Enrichment and Maceral, Oxidation, Metamorphic Degree of Uranium-Bearing Coal Somewhere. World Nuclear Geoscience, (2): 116–123(in Chinese)

    Google Scholar 

  • Lovley, D. R., Roden, E. E., Phillips, E. J. P., et al., 1993. Enzymatic Iron and Uranium Reduction by Sulfate-Reducing Bacteria. Marine Geology, 113(1/2): 41–53. https://doi.org/10.1016/0025-3227(93)90148-o

    Article  Google Scholar 

  • Lü, M. S., Chen, K. Y., Xue, L. Q., et al., 2010. High-Resolution Transgressive-Regressive Sequence Stratigraphy of Chang 8 Member of Yanchang Formation in Southwestern Ordos Basin, Northern China. Journal of Earth Science, 21(4): 423–438. https://doi.org/10.1007/s12583-010-0105-1

    Article  Google Scholar 

  • Min, M. Z., Luo, X. Z., Mao, S. L., et al., 2001. An Excellent Fossil Wood Cell Texture with Primary Uranium Minerals at a Sandstone-Hosted Roll-Type Uranium Deposit, NW China. Ore Geology Reviews, 17(4): 233–239. https://doi.org/10.1016/s0169-1368(00)00007-x

    Article  Google Scholar 

  • Min, M. Z., Xu, H. F., Chen, J., et al., 2005. Evidence of Uranium Biomineralization in Sandstone-Hosted Roll-Front Uranium Deposits, Northwestern China. Ore Geology Reviews, 26(3/4): 198–206. https://doi.org/10.1016/j.oregeorev.2004.10.003

    Article  Google Scholar 

  • Nagy, B., Gauthier-Lafaye, F., Holliger, P., et al., 1993. Role of Organic Matter in the Proterozoic Oklo Natural Fission Reactors, Gabon, Africa. Geology, 21(7): 655. https://doi.org/10.1130/0091-7613(1993)021<0655:roomit>2.3.co;2

    Article  Google Scholar 

  • Newsome, L., Morris, K., Lloyd, J. R., 2014. The Biogeochemistry and Bioremediation of Uranium and other Priority Radionuclides. Chemical Geology, 363: 164–184

    Article  Google Scholar 

  • Ortaboy, S., Atun, G., 2014. Kinetics and Equilibrium Modeling of Uranium(VI) Sorption by Bituminous Shale from Aqueous Solution. Annals of Nuclear Energy, 73: 345–354. https://doi.org/10.1016/j.anucene.2014.07.003

    Article  Google Scholar 

  • Reith, F., Lengke, M. F., Falconer, D., et al., 2007. The Geomicrobiology of Gold. The ISME Journal, 1(7): 567–584. https://doi.org/10.1038/ismej.2007.75

    Article  Google Scholar 

  • Ren, Z. l., Zhao, Z. Y., Zhang, J., et al., 1994. Research on Paleotemperature in the Ordos Basin. Acta Sedimentological Sinica, 12(1): 56–65 (in Chinese with English Abstract)

    Google Scholar 

  • Riegler, T., Beaufort, M.-F., Allard, T., et al., 2016. Nanoscale Relationships between Uranium and Carbonaceous Material in Alteration Halos around Unconformity-Related Uranium Deposits of the Kiggavik Camp, Paleoproterozoic Thelon Basin, Nunavut, Canada. Ore Geology Reviews, 79: 382–391. https://doi.org/10.1016/j.oregeorev.2016.04.018

    Article  Google Scholar 

  • Sassen, R., 1984. Effects of Radiation Exposure on Indicators of Thermal Maturity. Organic Geochemistry, 5(4): 183–186. https://doi.org/10.1016/0146-6380(84)90004-4

    Article  Google Scholar 

  • Schlepp, L., Landais, P., Elie, M., et al., 2001. Influence of Paleoenvironment and Radiolytic Alteration on the Geochemistry of Organic Matter from Autunian Shales of the Lodeve Uranium Deposit, France. Bulletin de la Societe Geologique de France, 172(1): 99–109. https://doi.org/10.2113/172.1.99

    Article  Google Scholar 

  • Seredin, V. V., Finkelman, R. B., 2008. Metalliferous Coals: A Review of the Main Genetic and Geochemical Types. International Journal of Coal Geology, 76(4): 253–289. https://doi.org/10.1016/j.coal.2008.07.016

    Article  Google Scholar 

  • Smieja-Król, B., Duber, S., Rouzaud, J. N., 2009. Multiscale Organisation of Organic Matter Associated with Gold and Uranium Minerals in the Witwatersrand Basin, South Africa. International Journal of Coal Geology, 78(1): 77–88. https://doi.org/10.1016/j.coal.2008.09.007

    Article  Google Scholar 

  • Spirakis, C. S., 1996. The Roles of Organic Matter in the Formation of Uranium Deposits in Sedimentary Rocks. Ore Geology Reviews, 11(1/2/3): 53–69. https://doi.org/10.1016/0169-1368(95)00015-1

    Google Scholar 

  • Sýkorová, I., Kříbek, B., Havelcová, M., et al., 2016. Radiation-and Self-Ignition Induced Alterations of Permian Uraniferous Coal from the Abandoned Novátor Mine Waste Dump (Czech Republic). International Journal of Coal Geology, 168: 162-178

    Article  Google Scholar 

  • Wang, X., 2016. Environmental Geochemistry of Uranium in Coal of Eastern Yunnan Province: [Dissertation]. China University of Mining and Technology, Xuzhou (in Chinese with English Abstract)

    Google Scholar 

  • Xiang, W. D., Chen, Z. B., Chen, Z. Y., et al., 2000. Discussion on Relationship between Organic Matter and Metallogenesis of Epigenetic Sandstone-Type Uranium Deposits: Take Shihongtan District in Turpan-Hami Basin as an Example. Uranium Geology, 16(2): 65–73. (in Chinese with English Abstract)

    Google Scholar 

  • Xie, H. L., 2016. Water-Rock Interaction in the Forming of the Paleo-int: Erlayer Oxidation Zone of the Daying Uranium Deposit, Northern Ordos Basin: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)

    Google Scholar 

  • Xie, H. L., Wu, L. W., Jiao, Y. Q., et al., 2016. The Quantitative Evaluation Index System for Uranium Reservoir Heterogeneity in Hantaimiao Region, Ordos Basin. Earth Science, 41(2): 279–292 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, J., Zhu, S. Y., Luo, T. Y., et al., 2015. Uranium Mineralization and Its Radioactive Decay-Induced Carbonization in a Black Shale-Hosted Polymetallic Sulfide Ore Layer, Southwest China. Economic Geology, 110(6): 1643–1652. https://doi.org/10.2113/econgeo.110.6.1643

    Article  Google Scholar 

  • Xue, C. J., Chi, G. X., Xue, W., 2010. Interaction of Two Fluid Systems in the Formation of Sandstone-Hosted Uranium Deposits in the Ordos Basin: Geochemical Evidence and Hydrodynamic Modeling. Journal of Geochemical Exploration, 106(1/2/3): 226–235. https://doi.org/10.1016/j.gexplo.2009.11.006

    Article  Google Scholar 

  • Xue, W., Xue, C. J., Chi, G. X., et al., 2009. Some Relations of Uranium Mineralization and Organic Matter in Jurassic Strata on the Northeastern Margin of Ordos Basin, China. Geological Review, 55(3): 361–369

    Google Scholar 

  • Yang, H. B., Tan, N., Wu, F. J., et al., 2012. Biosorption of Uranium(VI) by a Mangrove Endophytic Fungus Fusarium Sp. #ZZF51 from the South China Sea. Journal of Radioanalytical and Nuclear Chemistry, 292(3): 1011–1016. https://doi.org/10.1007/s10967-011-1552-6

    Article  Google Scholar 

  • Zhu, X. Y., Wang, Y. L., Wang, Z. C., et al., 2003. Trace Element Geochemistry of Sandstone-Type Uranium Deposits in Dongsheng Area. Geology-Geochemistry, 31(2): 39–45 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the 973 Project (No. 2015CB453003), Open Fund of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education (No. TPR-2015-09), Geological Survey Foundation of Ministry of Finance of the People’s Republic of China (No. 12120115013701), Natural Science Foundation of China (No. 41502105), and Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. G1323511660). We are appreciative of the collaboration with and enthusiastic support from Aisheng Miao, Yunbiao Peng and many other coworkers from No. 208 Geological Brigade of China Nuclear Corporation in this study. Besides, we thank Sidong Pan from Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education for providing guidance during testing samples. We thank Journal of Earth Science editors and reviewers for their thorough and critical reviews of an early version of this manuscript and suggestions to improve the manuscript. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0952-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangquan Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Jiao, Y., Wu, L. et al. Relations of Uranium Enrichment and Carbonaceous Debris within the Daying Uranium Deposit, Northern Ordos Basin. J. Earth Sci. 30, 142–157 (2019). https://doi.org/10.1007/s12583-017-0952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0952-0

Key words

Navigation