Skip to main content

Advertisement

Log in

Sustainable intensification options for smallholder maize-based farming systems in sub-Saharan Africa

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Appropriate sustainable intensification (SI) of agriculture is required in Sub-Saharan Africa to meet the rising demand for food and protect resources. Agroforestry and green manures, diversification with grain legumes, conservation agriculture and integrated nutrient management with mineral and organic fertilizers are SI options widely promoted for maize-based African smallholder systems. To assess the potential of SI options to contribute to multiple ecosystem services in these systems, we evaluated 17 published multi-year and site studies, using radar charts to systematically measure provisioning services (annualized maize grain and protein yields) and supporting services (vegetative biomass, rain productivity and agronomic efficiency of N fertilizer) among the studies and across technologies. We frequently observed trade-offs amongst provisioning and supporting ecosystem services, especially in rotational systems where the addition of a grain legume increased maize response to fertilizer but reduced annualized maize grain yields. Consistent gains in maize grain yield and vegetative biomass, and protein yield and rain productivity were obtained with the application of N fertilizer across the studies. More efficient use of N fertilizer was associated with legume diversification, particularly intercrop systems, with large incremental yield gains (30–80 kg grain kg−1 N fertilizer) at low fertilizer rates (< 50 kg N ha−1). These systems produced substantial amounts of grain, protein, vegetative biomass and high resource use efficiency (1 to 5-fold increase relative to sole maize). In contrast, performance was inconsistent from conservation tillage practices. The highly variable performance of many options that contribute to SI suggests the importance of their adaptation to local conditions and support for farmer innovation, rather than prescribing the use of fixed SI interventions. Overall, for maize system intensification, we suggest expanding farmer access to multipurpose legumes (such as long-duration pigeon pea) that provide food and copious biomass, and to N fertilizer, along with the local adaptation of water-conserving tillage practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adjei-Nsiah, S., Kuyper, T. W., Leeuwis, C., Abekoe, M. K., & Giller, K. E. (2007). Evaluating sustainable and profitable cropping sequences with cassava and four legume crops: effects on soil fertility and maize yields in the forest/savannah transitional agro-ecological zone of Ghana. Field Crops Research, 103, 87–97.

    Article  Google Scholar 

  • Aguilera, Y., Diaz, M. F., Jimenez, T., Benitez, V., Herrera, T., Cuadrado, C., Martin-Pedrosa, M., & Martin-Cabrejas, M. A. (2013). Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes. Journal of Agriculture and Food Chemistry, 61, 8120–8125.

    Article  CAS  Google Scholar 

  • Ajayi, O. C., Akinnifesi, F. K., Sileshi, G., & Chakeredza, S. (2007). Adoption of renewable soil fertility replenishment technologies in the southern African region: lessons learnt and the way forward. Natural Resources Forum, 31, 306–317.

    Article  Google Scholar 

  • Ajayi, O. C., Place, F., Akinnifesi, F. K., & Sileshi, G. W. (2011). Agricultural success from Africa: the case of fertilizer tree systems in southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). International Journal of Agricultural Sustainability, 9, 129–136.

    Article  Google Scholar 

  • Akinnifesi, F. K., Makumba, W., & Kwesiga, F. R. (2006). Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Experimental Agriculture, 42, 441–457.

    Article  Google Scholar 

  • Akinnifesi, F. K., Makumba, W., Sileshi, G., Ajayi, O. C., & Mweta, D. (2007). Synergistic effect of inorganic N and P fertilizers and organic inputs from Gliricidia sepium on productivity of intercropped maize in southern Malawi. Plant and Soil, 294, 203–217.

    Article  CAS  Google Scholar 

  • Andersson, J. A., & D’Souza, S. (2014). From adoption claims to understanding farmers and contexts: a literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agriculture, Ecosystems and Environment, 187, 116–132.

    Article  Google Scholar 

  • Andersson, J. A., & Giller, K. E. (2012). On heretics and God’s blanket: contested claims for conservation agriculture and the politics of its promotion in African smallholder farming. In J. Sumberg & J. Thompson (Eds.), Contested agronomy: agricultural research in a changing world (pp. 22–46). New York: Routledge, Taylor and Francis Group.

    Google Scholar 

  • Beddington, J. (2010). Food security: contributions from science to a new and greener revolution. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 365, 61–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beedy, T. L., Snapp, S. S., Akinnifesi, F. K., & Sileshi, G. W. (2010). Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agriculture, Ecosystems and Environment, 138, 139–146.

    Article  Google Scholar 

  • Boserup, E. (1965). The conditions of agricultural growth: the economics of agrarian change under population pressure. Chicago: Aldine.

    Google Scholar 

  • Brouder, S. M., & Gomez-Macpherson, H. (2014). The impact of conservation agriculture on smallholder agricultural yields: a scoping review of the evidence. Agriculture, Ecosystems and Environment, 187, 11–32.

    Article  Google Scholar 

  • Bwalya, M., Diallo, A. A., Phiri, E., & Hamadoun, M. (2009). Sustainable land and water management: the CAADP Pillar1 framework. Midrand: The Comprehensive Africa Agriculture Development Programme (CAADP).

    Google Scholar 

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 96, 5952–5959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamshama, S. A. O., Mugasha, A. G., Klovstad, A., Haveraaen, O., & Maliondo, S. M. S. (1998). Growth and yield of maize alley cropped with Leucaena leucocephala and Faidherbia albida in Morogoro, Tanzania. Agroforestry Systems, 40, 215–225.

    Article  Google Scholar 

  • Chartres, C. J., & Noble, A. (2015). Sustainable intensification: overcoming land and water constraints on food production. Food Security, 7(2), 235–245.

    Article  Google Scholar 

  • Chikowo, R., Mapfumo, P., Nyamugafata, P., Nyamadzawo, G., & Giller, K. E. (2003). Nitrate-N dynamics following improved fallows and maize root development in a Zimbabwean sandy clay loam. Agroforestry Systems, 59, 187–195.

    Article  Google Scholar 

  • Chikowo, R., Mapfumo, P., Nyamugafata, P., & Giller, K. E. (2004). Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe. Agriculture, Ecosystems and Environment, 102, 119–131.

    Article  Google Scholar 

  • Chirwa, P. W., Black, C. R., Ong, C. K., & Maghembe, J. A. (2003). Tree and crop productivity in gliricidia/maize/pigeonpea cropping systems in southern Malawi. Agroforestry Systems, 59, 265–277.

    Article  Google Scholar 

  • Chuma, E., & Hagmann, J. (1995). Summary of results and experiments from on-station and on-farm testing and development of conservation tillage systems in semi-arid Masvingo. In S. Twomlow, J. Ellis-Jones, J. Hagmann, & H. Loos (Eds.), Soil and water conservation for smallholder farmers in semi-arid Zimbabwe: transfers between research and extension (pp. 61–69). Harare: Integrated Rural Development Programme.

    Google Scholar 

  • Coe, R., Sinclair, F., & Barrios, E. (2014). Scaling up agroforestry requires research ‘in’ rather than ‘for’ development. Current Opinion in Environmental Sustainability, 6, 73–77.

    Article  Google Scholar 

  • Daily, G. C., & Matson, P. A. (2008). Ecosystem services: from theory to implementation. Proceedings of the National Academy of Sciences of the United States of America, 105, 9455–9456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon, J. A., Gulliver, A., & Gibbon, D. (2001). Farming systems and poverty: improving farmers’ livelihoods in a changing world (summary). In M. Hall (Ed.), Farming systems and poverty: improving farmers’ livelihoods in a changing world (p. 407). Rome: FAO & World Bank.

    Google Scholar 

  • Dorward, A., & Chirwa, E. (2011). The Malawi agricultural input subsidy programme: 2005/06 to 2008/09. International Journal of Agricultural Sustainability, 9, 232–247.

    Article  Google Scholar 

  • Douxchamps, S., Rao, I. M., Peters, M., Van der Hoek, R., Schmidt, A., Martens, S., Polania, J., Mena, M., Binder, C. R., Scholl, R., Quintero, M., Kreuzer, M., Frossard, E., & Oberson, A. (2014). Farm-scale tradeoffs between legume use as forage versus green manure: the case of Canavalia brasiliensis. Agroecology and Sustainable Food Systems, 38, 25–45.

    Article  Google Scholar 

  • Drinkwater, L. E., Wagoner, P., & Sarrantonio, M. (1998). Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 396, 262–265.

    Article  CAS  Google Scholar 

  • Enfors, E., Barron, J., Makurira, H., Rockstrom, J., & Tumbo, S. (2011). Yield and soil system changes from conservation tillage in dryland farming: a case study from north eastern Tanzania. Agricultural Water Management, 98, 1687–1695.

    Article  Google Scholar 

  • Fischer, G., Shah, M., Tubiello, F. N., & van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 360, 2067–2083.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fofana, B., Breman, H., Carsky, R. J., Van Reuler, H., Tamelokpo, A. F., & Gnakpenou, D. (2004). Using mucuna and P fertilizer to increase maize grain yield and N fertilizer use efficiency in the coastal savanna of Togo. Nutrient Cycling in Agroecosystems, 68, 213–222.

    Article  CAS  Google Scholar 

  • Fowler, R., & Rockstrom, J. (2001). Conservation tillage for sustainable agriculture - an agrarian revolution gathers momentum in Africa. Soil Tillage Research, 61, 93–107.

    Article  Google Scholar 

  • Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., & Hoell, A. (2008). Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proceedings of the National Academy of Sciences of the United States of America, 105, 11081–11086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., Larwanou, M., & Bayala, J. (2010). Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Security, 2, 197–214.

    Article  Google Scholar 

  • Gilbert, R. A. (2004). Best-bet legumes for smallholder maize-based cropping systems of Malawi. In M. Eilitta, J. Mureithi, & R. Derpsch (Eds.), Green manure/cover crop Systems of Smallholder Farmers: experiences from tropical and subtropical regions (pp. 153–174). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Giller, K. E. (2001). Nitrogen fixation in tropical cropping systems. Wallingford: CABI.

    Book  Google Scholar 

  • Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Research, 114, 23–34.

    Article  Google Scholar 

  • Giller, K. E., Murwira, M. S., Dhliwayo, D. K. C., Mafongoya, P. L., & Mpepereki, S. (2011a). Soyabeans and sustainable agriculture in southern Africa. International Journal of Agricultural Sustainability, 9, 50–58.

    Article  Google Scholar 

  • Giller, K. E., Tittonell, P., Rufino, M. C., van Wijk, M. T., Zingore, S., Mapfumo, P., Adjei-Nsiah, S., Herrero, M., Chikowo, R., Corbeels, M., Rowe, E. C., Baijukya, F., Mwijage, A., Smith, J., Yeboah, E., van der Burg, W. J., Sanogo, O. M., Misiko, M., de Ridder, N., Karanja, S., Kaizzi, C., K’Ungu, J., Mwale, M., Nwaga, D., Pacini, C., & Vanlauwe, B. (2011b). Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agricultural Systems, 104, 191–203.

    Article  Google Scholar 

  • Giller, K. E., Andersson, J. A., Corbeels, M., Kirkegaard, J., Mortensen, D., Erenstein, O., & Vanlauwe, B. (2015). Beyond conservation agriculture. Frontiers in Plant Science. doi:10.3389/fpls.2015.00870.

    PubMed  PubMed Central  Google Scholar 

  • Glover, J. D., Reganold, J. P., & Cox, C. M. (2012). Plant perennials to save Africa’s soils. Nature, 489, 359–361.

    Article  CAS  PubMed  Google Scholar 

  • Godfray, H. C. J. (2015). The debate over sustainable intensification. Food Security, 7(2), 199–208.

    Article  Google Scholar 

  • Gregorich, E. G., Drury, C. F., & Baldock, J. A. (2001). Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Canadian Journal of Soil Science, 81, 21–31.

    Article  CAS  Google Scholar 

  • Guretzki, S., & Papenbrock, J. (2014). Characterization of Lablab purpureus regarding drought tolerance, trypsin inhibitor activity and cyanogenic potential for selection in breeding programmes. Journal of Agronomy and Crop Science, 200, 24–35.

    Article  CAS  Google Scholar 

  • Haggblade, S., & Tembo, G. (2003). Early evidence on conservation agriculture in Zambia. A paper prepared for the international workshop on "reconciling rural poverty and resource conservation: identifying relationships and remedies". Ithaca: Cornell University.

    Google Scholar 

  • Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363, 543–555.

    Article  PubMed  Google Scholar 

  • Hussain, I., Olson, K., & Ebelhar, S. A. (1999). Impacts of tillage and no-till on production of maize and soybean on an eroded Illinois silt loam soil. Soil and Tillage Research, 52(1–2), 37–49.

    Article  Google Scholar 

  • Isaacs, K. B., Snapp, S. S., Chung, K., & Waldman, K. B. (2016). Assessing the value of diverse cropping systems under a new agricultural policy environment in Rwanda. Food Security, 8(3), 491–506.

    Article  Google Scholar 

  • Jensen, J. R., Bernhard, R. H., Hansen, S., McDonagh, J., Moberg, J. P., Nielsen, N. E., & Nordbo, E. (2003). Productivity in maize based cropping systems under various soil-water-nutrient management strategies in a semi-arid, alfisol environment in East Africa. Agricultural Water Management, 59, 217–237.

    Article  Google Scholar 

  • Kamanga, B. C. G., Kanyama-Phiri, G. Y., Waddington, S. R., Almekinders, C., & Giller, K. E. (2014). Evaluation and adoption of annual legumes by smallholder maize farmers for soil fertility maintenance and food diversity in Central Malawi. Food Security, 6(1), 45–59.

    Article  Google Scholar 

  • Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2009). The spread of conservation agriculture: justification, sustainability and uptake. International Journal of Agricultural Sustainability, 7, 292–320.

    Article  Google Scholar 

  • Keating, B. A., Carberry, P. S., Bindraban, P. S., Asseng, S., Meinke, H., & Dixon, J. (2010). Eco-efficient agriculture: concepts, challenges, and opportunities. Crop Science, 50, S109–S119.

    Article  Google Scholar 

  • Kibunja, C. N., Mwaura, F. B., Mugendi, D. N., Gicheru, P. T., Wamuongo, J. W., & Bationo, A. (2012). Strategies for maintenance and improvement of soil productivity under continuous maize and beans cropping system in the sub-humid highlands of Kenya: case study of the long-term trial at Kabete. In A. Bationo, B. Waswa, J. Kihara, I. Adolwa, B. Vanlauwe, & K. Saidou (Eds.), Lessons learned from long-term soil fertility management experiments in Africa (pp. 59–84). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kihara, J., Bationo, A., Mugendi, D. N., Martius, C., & Vlek, P. L. G. (2011). Conservation tillage, local organic resources and nitrogen fertilizer combinations affect maize productivity, soil structure and nutrient balances in semi-arid Kenya. Nutrient Cycling in Agroecosystems, 90, 213–225.

    Article  CAS  Google Scholar 

  • Kumwenda, J. D. T., Waddington, S. R., Snapp, S. S., Jones, R. B., & Blackie, M. J. (1996). Soil fertility management research for the maize cropping systems of smallholders in southern Africa: a review. Natural Resources Group Paper 96–02 (p. 35). Mexico DF: CIMMYT.

    Google Scholar 

  • Kurwakumire, N., Chikowo, R., Zingore, S., Mapfumo, P., Mtambanegwe, F., Johnston, A., & Snapp, S. S. (2015). Nutrient management strategies on heterogeneously fertile granitic-derived soils in sub-humid Zimbabwe. Agronomy Journal, 107, 1068–1076.

    Article  CAS  Google Scholar 

  • Li, L., Li, S. M., Sun, J. H., Zhou, L. L., Bao, X. G., Zhang, H. G., & Zhang, F. S. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104, 11192–11196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mafongoya, P. L., Bationo, A., Kihara, J., & Waswa, B. S. (2006). Appropriate technologies to replenish soil fertility in southern Africa. Nutrient Cycling in Agroecosystems, 76, 137–151.

    Article  Google Scholar 

  • Makumba, W., Akinnifesi, F. K., Janssen, B., & Oenema, O. (2007). Long-term impact of a gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agriculture, Ecosystems and Environment, 118, 237–243.

    Article  CAS  Google Scholar 

  • Materechera, S. A., & Mloza-Banda, H. R. (1997). Soil penetration resistance, root growth and yield of maize as influenced by tillage system on ridges in Malawi. Soil Tillage Research, 41, 13–24.

    Article  Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Mhango, W. G., Snapp, S. S., & Phiri, G. Y. K. (2013). Opportunities and constraints to legume diversification for sustainable maize production on smallholder farms in Malawi. Renewable Agriculture and Food Systems, 28(3), 234–244.

    Article  Google Scholar 

  • Morris, M., Kelly, V. A., Kopicki, R. J., & Byerlee, D. (2007). Fertilizer use in African agriculture: lessons learned and good practice guidelines. Washington DC: The World Bank 144 p.

    Book  Google Scholar 

  • Munodawafa, A., & Zhou, N. (2008). Improving water utilization in maize production through conservation tillage systems in semi-arid Zimbabwe. Physics and Chemistry of the Earth, 33, 757–761.

    Article  Google Scholar 

  • Nair, P. K. R., & Nair, V. D. (2014). ‘solid–fluid–gas’: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Current Opinion in Environmental Sustainability, 6, 22–27.

    Article  Google Scholar 

  • Nandwa, S. M., & Bekunda, M. A. (1998). Research on nutrient flows and balances in east and southern Africa: state-of-the-art. Agriculture, Ecosystems and Environment, 71, 5–18.

    Article  CAS  Google Scholar 

  • Newton, A. C., Begg, G. S., & Swanston, J. S. (2009). Deployment of diversity for enhanced crop function. Annals of Applied Biology, 154, 309–322.

    Article  Google Scholar 

  • Nyagumbo, I., & Bationo, A. (2011). Exploring crop yield benefits of integrated water and nutrient management technologies in the desert margins of Africa: experiences from semi-arid Zimbabwe. In A. Bationo, B. Waswa, J. M. Okeyo, F. Maina, & J. M. Kihara (Eds.), Innovations as key to the green revolution in Africa (pp. 759–772). Netherlands: Springer.

    Chapter  Google Scholar 

  • Nyende, P., & Delve, R. J. (2004). Farmer participatory evaluation of legume cover crop and biomass transfer technologies for soil fertility improvement using farmer criteria, preference ranking and logit regression analysis. Experimental Agriculture, 40, 77–88.

    Article  Google Scholar 

  • Okalebo, J. R., Othieno, C. O., Woomer, P. L., Karanja, N. K., Semoka, J. R. M., Bekunda, M. A., Mugendi, D. N., Muasya, R. M., Bationo, A., & Mukhwana, E. J. (2006). Available technologies to replenish soil fertility in East Africa. Nutrient Cycling in Agroecosystems, 76, 153–170.

    Article  Google Scholar 

  • Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G., & Giller, K. E. (2001). Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agriculture, Ecosystems & Environment, 83, 27–42.

    Article  Google Scholar 

  • Pauw, K., Thurlow, J., Bachu, M., & Van Seventer, D. E. (2011). The economic costs of extreme weather events: a hydrometeorological CGE analysis for Malawi. Environment and Development Economics, 16, 177–198.

    Article  Google Scholar 

  • Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 365, 2959–2971.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9, 5–24.

    Article  Google Scholar 

  • Pugalenthi, M., Vadivel, V., & Siddhuraju, P. (2005). Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis – a review. Plant Foods for Human Nutrition, 60, 201–218.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, T. W., Waddington, S. R., Anderson, C. L., Chew, A., True, Z., & Cullen, A. (2015). Environmental impacts and constraints associated with the production of major food crops in sub-Saharan Africa and South Asia. Food Security, 7(4), 795–822.

    Article  Google Scholar 

  • Rusinamhodzi, L., Corbeels, M., van Wijk, M. T., Rufino, M. C., Nyamangara, J., & Giller, K. E. (2011). A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agronomy for Sustainable Development, 31, 657–673.

    Article  Google Scholar 

  • Sanchez, P. A. (2002). Soil fertility and hunger in Africa. Science, 295, 2019–2020.

    Article  CAS  PubMed  Google Scholar 

  • Schlecht, E., Buerkert, A., Tielkes, E., & Bationo, A. (2006). A critical analysis of challenges and opportunities for soil fertility restoration in Sudano-Sahelian West Africa. Nutrient Cycling in Agroecosystems, 76, 109–136.

    Article  Google Scholar 

  • Shennan, C. (2008). Biotic interactions, ecological knowledge and agriculture. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363, 717–739.

    Article  PubMed  Google Scholar 

  • Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world. 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327.

    Article  Google Scholar 

  • Shumba, E. M., Waddington, S. R., & Rukuni, M. (1992). Tine tillage, with atrazine weed control, to permit earlier planting of maize by smallholder farmers in Zimbabwe. Experimental Agriculture, 28, 443–452.

    Article  CAS  Google Scholar 

  • Smith, L., Alderman, H., & Aduayom, D. (2006). Food insecurity in sub-Saharan Africa: new estimates from household expenditure surveys. Washington DC: International Food Policy Research Institute.

    Google Scholar 

  • Smith, R. G., Gareau, T. P., Mortensen, D. A., Curran, W. S., & Barbercheck, M. E. (2011). Assessing and visualizing agricultural management practices: a multivariable hands-on approach for education and extension. Weed Technology, 25(4), 680–687.

    Article  Google Scholar 

  • Snapp, S. S. (1998). Soil nutrient status of smallholder farms in Malawi. Communications in Soil Science and Plant Analysis, 29, 2571–2588.

    Article  CAS  Google Scholar 

  • Snapp, S. S., & Silim, S. N. (2002). Farmer preferences and legume intensification for low nutrient environments. Plant and Soil, 245, 181–192.

    Article  CAS  Google Scholar 

  • Snapp, S. S., Mafongoya, P. L., & Waddington, S. (1998). Organic matter technologies for integrated nutrient management in smallholder cropping systems of southern Africa. Agriculture, Ecosystems and Environment, 71, 185–200.

    Article  Google Scholar 

  • Snapp, S., Kanyama-Phiri, G., Kamanga, B., Gilbert, R., & Wellard, K. (2002a). Farmer and researcher partnerships in Malawi: developing soil fertility technologies for the near-term and far-term. Experimental Agriculture, 38, 411–431.

    Article  Google Scholar 

  • Snapp, S. S., Rohrbach, D. D., Simtowe, F., & Freeman, H. A. (2002b). Sustainable soil management options for Malawi: can smallholder farmers grow more legumes? Agriculture, Ecosystems and Environment, 91, 159–174.

    Article  Google Scholar 

  • Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R., & Kanyama-Phiri, G. Y. (2010). Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences of the United States of America, 107, 20840–20845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroosnijder, L. (2007). Rainfall and Land Degradation. In Climate and land degradation. Berlin: Springer Berlin Heidelberg, pp. 167–195. Available at: http://link.springer.com/10.1007/978-3-540-72438-4_9.

  • Thierfelder, C., & Wall, P. C. (2009). Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research, 105(2), 217–227.

    Article  Google Scholar 

  • Thierfelder, C., & Wall, P. C. (2012). Effects of conservation agriculture on soil quality and productivity in contrasting agro-ecological environments of Zimbabwe. Soil Use Management, 28, 209–220.

    Article  Google Scholar 

  • Thierfelder, C., Cheesman, S., & Rusinamhodzi, L. (2012). A comparative analysis of conservation agriculture systems: benefits and challenges of rotations and intercropping in Zimbabwe. Field Crops Research, 137, 237–250.

    Article  Google Scholar 

  • Thierfelder, C., Chisui, J. L., Gama, M., Cheesman, S., Jere, Z. D., Bunderson, W. T., Eash, N. S., & Rusinamhodzi, L. (2013a). Maize-based conservation agriculture systems in Malawi: long-term trends in productivity. Field Crops Research, 142, 47–57.

    Article  Google Scholar 

  • Thierfelder, C., Mwila, M., & Rusinamhodzi, L. (2013b). Conservation agriculture in eastern and southern provinces of Zambia: long-term effects on soil quality and maize productivity. Soil Tillage Research, 126, 246–258.

    Article  Google Scholar 

  • Tittonell, P., Vanlauwe, B., Corbeels, M., & Giller, K. E. (2008). Yield gaps, nutrient use efficiencies and response to fertilizers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil, 313, 19–37.

    Article  CAS  Google Scholar 

  • Twomlow, S., Rohrbach, D., Dimes, J., Rusike, J., Mupangwa, W., Ncube, B., Hove, L., Moyo, M., Mashingaidze, N., & Mahposa, P. (2010). Micro-dosing as a pathway to Africa’s green revolution: evidence from broad-scale on-farm trials. Nutrient Cycling in Agroecosystems, 88, 3–15.

    Article  Google Scholar 

  • Vanlauwe, B., Kihara, J., Chivenge, P., Pypers, P., Coe, R., & Six, J. (2011). Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant and Soil, 339, 35–50.

    Article  CAS  Google Scholar 

  • Vanlauwe, B., Wendt, J., Giller, K. E., Corbeels, M., Gerard, B., & Nolte, C. (2014). A fourth principle is required to define conservation agriculture in sub-Saharan Africa: the appropriate use of fertilizer to enhance crop productivity. Field Crops Research, 155, 10–13.

    Article  Google Scholar 

  • Versteeg, M. N., Amadji, F., Eteka, A., Gogan, A., & Koudokpon, V. (1998). Farmers’ adoptability of mucuna fallowing and agroforestry technologies in the coastal savanna of Benin. Agricultural Systems, 56, 269–287.

    Article  Google Scholar 

  • Vissoh, P., Manyong, V. M., Carsky, J. R., Osei-Bonsu, P., & Galiba, M. (1998). Experiences with macuna in West Africa. In D. Buckles, A. Eteka, O. Osiname, M. Galiba, & G. Galiano (Eds.), Cover crops in West Africa contributing to sustainable agriculture. Ottawa: IDRC IITA, Ibadan; SG2000, Cotonou.

    Google Scholar 

  • Waddington, S.R., Sakala, W.D., & Mekuria, M. (2004). Progress in lifting soil fertility in Southern Africa. Proceedings of the 4th International Crop Science Congress, 26 September - 1 October, 2004. ICSC, Brisbane, Australia. http://www.cropscience.org.au/icsc2004.

  • Waddington, S. R., Mekuria, M., Siziba, S., & Karigwindi, J. (2007a). Long-term yield sustainability and financial returns from grain legume-maize intercrops on a sandy soil in subhumid north Central Zimbabwe. Experimental Agriculture, 43(4), 489–503.

    Article  Google Scholar 

  • Waddington, S. R., Karigwindi, J., & Chifamba, J. (2007b). The sustainability of a groundnut plus maize rotation over 12 years on smallholder farms in the sub-humid zone of Zimbabwe. African Journal of Agricultural Research, 2, 342–348.

    Google Scholar 

  • Waddington, S. R., Li, X., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27–48.

    Article  Google Scholar 

  • Wopereis, M. C. S., Tamélokpo, A., Ezui, K., Gnakpénou, D., Fofana, B., & Breman, H. (2006). Mineral fertilizer management of maize on farmer fields differing in organic inputs in the west African savanna. Field Crops Research, 96(2), 355–362.

    Article  Google Scholar 

  • Zingore, S., Murwira, H. K., Delve, R. J., & Giller, K. E. (2007). Soil type, management history and current resource allocation: three dimensions regulating variability in crop productivity on African smallholder farms. Field Crops Research, 101, 296–305.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Emily May and Danielle Zoellner for help with literature citing and data preparation, as well as Regis Chikowo and five anonymous reviewers for their suggestions on drafts of this paper. A substantial part of the work was carried out while the lead author was affiliated with the International Food Policy Research Institute’s Malawi country program using funds from Irish Aid Malawi. Further financial support was provided by United States Agency for International Development - Feed the Future, through the Africa RISING project of the International Institute for Tropical Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus J. Droppelmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Droppelmann, K.J., Snapp, S.S. & Waddington, S.R. Sustainable intensification options for smallholder maize-based farming systems in sub-Saharan Africa. Food Sec. 9, 133–150 (2017). https://doi.org/10.1007/s12571-016-0636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-016-0636-0

Keywords

Navigation