Skip to main content

Advertisement

Log in

Male and female rat bone marrow-derived mesenchymal stem cells are different in terms of the expression of germ cell specific genes

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Recent studies have shown that mesenchymal stem cells (MSCs), under appropriate conditions, can differentiate into cell types including germ cells (GCs). These studies also show that MSCs without any induction express some GC-specific genes innately. Moreover, one report suggests that female MSCs have a greater tendency to differentiate into female instead of male GCs. Therefore, for the first time, this study attempts to assay and determine the differences between the expression levels of some important GC-specific genes (Stra8, Vasa, Dazl, Stella, Piwil2, Oct4, Fragilis, Rnf17 and c-Kit) in male and female bone marrow (BM)-MSCs of rats. BM sampling of the rate was performed by a newly established method. We cultured rat BM samples, then characterized male and female MSCs according to their adhesion onto the culture dish, their differentiation potential into bone, cartilage and fat cells, and phenotype analysis by flow cytometry. The expression of GC-specific genes and their expression levels were evaluated with reverse transcription polymerase chain reaction (RT-PCR) and real-time RT-PCR. Our results showed that Dazl and Rnf17 did not express in the cells. The majority of examined genes, except Piwil2, expressed at almost the same levels in male and female MSCs. Piwil2 had higher expression in male MSCs which was probably related to the more prominent role of Piwil2 in the male GC development process. Male BM-MSCs appeared more prone to differentiate into male rather than female GCs. Additional research should be performed to determine the exact role of different genes in the male and female GC development process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aflatoonian B, Moore H (2005) Human primordial germ cells and embryonic germ cells, and their use in cell therapy. Curr Opin Biotechnol 16:530–535

    Article  CAS  PubMed  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  CAS  PubMed  Google Scholar 

  • Bowles J, Koopman P (2007) Retinoic acid, meiosis and germ cell fate in mammals. Development 134:3401–3411

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shao JZ, Xiang LX et al (2008) Mesenchymal stem cells: a promising candidate in regenerative medicine. Int J Biochem Cell Biol 40:815–820

    Article  CAS  PubMed  Google Scholar 

  • Chiu RC (2003) Bone-marrow stem cells as a source for cell therapy. Heart Fail Rev 8:247–251

    Article  PubMed  Google Scholar 

  • da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Drusenheimer N, Wulf G, Nolte J et al (2007) Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl 63:69–76

    CAS  PubMed  Google Scholar 

  • Eslaminejad MB, Taghiyar L (2010) Study of the structure of canine mesenchymal stem cell osteogenic culture. Anat Histol Embryol 39:446–455

    CAS  PubMed  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Eslaminejad MB, Batavani R et al (2014a) Comparison of the efficacy of three concentrations of retinoic acid for transdifferentiation induction in sheep marrow-derived mesenchymal stem cells into male germ cells. Andrologia 46:24–35

    Article  CAS  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Sedighi-Gilani MA, Eslaminejad MB (2014b) Induction of ram bone marrow mesenchymal stem cells into germ cell lineage using transforming growth factor-β superfamily growth factors. Reprod Domest Anim. doi:10.1111/rda.12327

    PubMed  Google Scholar 

  • Ghasemzadeh-Hasankolai M, Batavani R, Eslaminejad MB et al (2012) Effect of zinc ions on differentiation of bone marrow-derived mesenchymal stem cells to male germ cells and some germ cell-specific gene expression in rams. Biol Trace Elem Res 150:137–146

    Article  PubMed  Google Scholar 

  • Gustafson EA, Wessel GM (2010) Vasa genes: emerging roles in the germ line and in multipotent cells. BioEssays 32:626–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashi K, de Sousa Lopes SM, Surani MA (2007) Germ cell specification in mice. Science 316:394–396

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Pan S, Yang C et al (2009a) Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reprod Biomed Online 19:99–105

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Yu H, Dong W et al (2009b) Characterization of mesenchymal stem cells (MSCs) from human fetal lung: potential differentiation of germ cells. Tissue Cell 41:448–455

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Lin LM, Wu XY et al (2010) Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 109:747–754

    CAS  PubMed  Google Scholar 

  • Johnson J, Bagley J, Skaznik-Wikiel M et al (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–315

    Article  CAS  PubMed  Google Scholar 

  • Kassem M, Abdallah BM (2008) Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res 331:157–163

    Article  PubMed  Google Scholar 

  • Kerr CL, Hill CM, Blumenthal PD et al (2008) Expression of pluripotent stem cell markers in the human fetal ovary. Hum Reprod 23:589–599

    Article  CAS  PubMed  Google Scholar 

  • Kitada M (2012) Mesenchymal cell populations: development of the induction systems for Schwann cells and neuronal cells and finding the unique stem cell population. Anat Sci Int 87:24–44

    Article  CAS  PubMed  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Yomogida K et al (2001) Two mouse piwi-related genes: miwi and mili. Mech Dev 108:121–133

    Article  CAS  PubMed  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Ijiri TW et al (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131:839–849

    Article  CAS  PubMed  Google Scholar 

  • Lacham-Kaplan O (2004) In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction 128:147–152

    Article  PubMed  Google Scholar 

  • Lange UC, Saitou M, Western PS et al (2003) The fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev Biol 3:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JH, Engel W, Nayernia K (2006a) Stem cell protein Piwil2 modulates expression of murine spermatogonial stem cell expressed genes. Mol Reprod Dev 73:173–179

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Schutte D, Wulf G et al (2006b) Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum Mol Genet 15:201–211

    Article  CAS  PubMed  Google Scholar 

  • Lennon DP, Caplan AI (2006) Isolation of rat marrow-derived mesenchymal stem cells. Exp Hematol 34:1606–1607

    Article  CAS  PubMed  Google Scholar 

  • Medrano JV, Marques-Mari AI, Aguilar CE et al (2010) Comparative analysis of the germ cell markers c-KIT, SSEA-1 and VASA in testicular biopsies from secretory and obstructive azoospermias. Mol Hum Reprod 16:811–817

    Article  CAS  PubMed  Google Scholar 

  • Nayernia K, Lee JH, Drusenheimer N et al (2006) Derivation of male germ cells from bone marrow stem cells. Lab Invest 86:654–663

    Article  CAS  PubMed  Google Scholar 

  • Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12:126–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ovitt CE, Scholer HR (1998) The molecular biology of Oct-4 in the early mouse embryo. Mol Hum Reprod 4:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Goodheart M, Chuma S et al (2005) RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development 132:4029–4039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  • Pountos I, Giannoudis PV (2005) Biology of mesenchymal stem cells. Injury 36:S8–S12

    Article  PubMed  Google Scholar 

  • Pountos I, Corscadden D, Emery P et al (2007) Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury 38(Suppl 4):S23–33

    Article  PubMed  Google Scholar 

  • Qiu P, Bai Y, Pan S et al (2013) Gender depended potentiality of differentiation of human umbilical cord mesenchymal stem cells into oocyte-Like cells in vitro. Cell Biochem Funct 31:365–373

    Article  CAS  PubMed  Google Scholar 

  • Saitou M (2009) Germ cell specification in mice. Curr Opin Genet Dev 19:386–395

    Article  CAS  PubMed  Google Scholar 

  • Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293–300

    Article  CAS  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  PubMed  Google Scholar 

  • Wongtrakoongate P, Jones M, Gokhale PJ et al (2013) STELLA facilitates differentiation of germ cell and endodermal lineages of human embryonic stem cells. PLoS ONE 8:e56893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodbury D, Reynolds K, Black IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69:908–917

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Pantakani DV, Luhrig S et al (2011) Stage-specific germ-cell marker genes are expressed in all mouse pluripotent cell types and emerge early during induced pluripotency. PLoS ONE 6:e22413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin DT, Wang Q, Chen L et al (2011) Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin. PLoS ONE 6:e27154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Z, Ji P, Cao J et al (2009) Dazl promotes germ cell differentiation from embryonic stem cells. J Mol Cell Biol 1:93–103

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Li Y, Nie R et al (2008) Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro. Biol Reprod 78:537–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported financially by a research grant (number 91002356) from Iran National Science Foundation (INSF) and conducted in collaboration with the Royan institute.

Conflict of interest

This study has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ghasemzadeh-Hasankolaei, Mohammadreza Baghaban Eslaminejad or Roozali Batavani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemzadeh-Hasankolaei, M., Eslaminejad, M.B., Batavani, R. et al. Male and female rat bone marrow-derived mesenchymal stem cells are different in terms of the expression of germ cell specific genes. Anat Sci Int 90, 187–196 (2015). https://doi.org/10.1007/s12565-014-0250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-014-0250-1

Keywords

Navigation