Skip to main content

Advertisement

Log in

Mesenchymal cell populations: development of the induction systems for Schwann cells and neuronal cells and finding the unique stem cell population

  • Review article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Mesenchymal cell populations, referred to as mesenchymal stem cells or multipotent stromal cells (MSCs), which include bone marrow stromal cells (BMSCs), umbilical cord stromal cells and adipose stromal cells (ASCs), participate in tissue repair when transplanted into damaged or degenerating tissues. The trophic support and immunomodulation provided by MSCs can protect against tissue damage, and the differentiation potential of these cells may help to replace lost cells. MSCs are easily accessible and can be expanded on a large scale. In addition, BMSCs and ASCs can be harvested from the patient himself. Thus, MSCs are considered promising candidates for cell therapy. In this review, I will discuss recently discovered high-efficiency induction systems for deriving Schwann cells and neurons from MSCs. Other features of MSCs that are important for tissue repair include the self-renewing property of stem cells and their potential for differentiation. Thus, I will also discuss the stemness of MSCs and describe the discovery of a certain stem cell type among adult MSCs that can self-renew and differentiate into cells of all three germ layers. Furthermore, I will explore the prospects of using this cell population for cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767

    PubMed  CAS  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    PubMed  CAS  Google Scholar 

  • Akerud P, Alberch J, Eketjall S, Wagner J, Arenas E (1999) Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons. J Neurochem 73:70–78

    PubMed  CAS  Google Scholar 

  • Aldinucci A, Rizzetto L, Pieri L et al (2010) Inhibition of immune synapse by altered dendritic cell actin distribution: a new pathway of mesenchymal stem cell immune regulation. J Immunol 185:5102–5110

    PubMed  CAS  Google Scholar 

  • Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    PubMed  CAS  Google Scholar 

  • Anderson PN, Campbell G, Zhang Y, Lieberman AR (1998) Cellular and molecular correlates of the regeneration of adult mammalian CNS axons into peripheral nerve grafts. Prog Brain Res 117:211–232

    PubMed  CAS  Google Scholar 

  • Asari S, Itakura S, Ferreri K et al (2009) Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 37:604–615

    PubMed  CAS  Google Scholar 

  • Bai H, Suzuki Y, Noda T et al (2003) Dissemination and proliferation of neural stem cells on the spinal cord by injection into the fourth ventricle of the rat: a method for cell transplantation. J Neurosci Methods 124:181–187

    PubMed  Google Scholar 

  • Bain JR, Mackinnon SE, Hunter DA (1989) Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 83:129–138

    PubMed  CAS  Google Scholar 

  • Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    PubMed  Google Scholar 

  • Benfey M, Aguayo AJ (1982) Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature 296:150–152

    PubMed  CAS  Google Scholar 

  • Biernaskie J, Paris M, Morozova O et al (2009) SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5:610–623

    PubMed  CAS  Google Scholar 

  • Bithell A, Williams BP (2005) Neural stem cells and cell replacement therapy: making the right cells. Clin Sci (Lond) 108:13–22

    CAS  Google Scholar 

  • Bliss T, Guzman R, Daadi M, Steinberg GK (2007) Cell transplantation therapy for stroke. Stroke 38:817–826

    PubMed  Google Scholar 

  • Bochev I, Elmadjian G, Kyurkchiev D et al (2008) Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol Int 32:384–393

    PubMed  CAS  Google Scholar 

  • Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332:370–379

    PubMed  CAS  Google Scholar 

  • Chabannes D, Hill M, Merieau E et al (2007) A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 110:3691–3694

    PubMed  CAS  Google Scholar 

  • Chan EM, Ratanasirintrawoot S, Park IH et al (2009) Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27:1033–1037

    PubMed  CAS  Google Scholar 

  • Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3:e1451

    Google Scholar 

  • Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    PubMed  Google Scholar 

  • Chopp M, Li Y (2002) Treatment of neural injury with marrow stromal cells. Lancet Neurol 1:92–100

    PubMed  Google Scholar 

  • Chopp M, Zhang XH, Li Y et al (2000) Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 11:3001–3005

    PubMed  CAS  Google Scholar 

  • Chopp M, Li Y, Zhang J (2008) Plasticity and remodeling of brain. J Neurol Sci 265:97–101

    PubMed  CAS  Google Scholar 

  • Chu K, Kim M, Park KI et al (2004) Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016:145–153

    PubMed  CAS  Google Scholar 

  • Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372

    PubMed  CAS  Google Scholar 

  • Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    PubMed  CAS  Google Scholar 

  • Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    PubMed  CAS  Google Scholar 

  • Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    PubMed  CAS  Google Scholar 

  • Curtis L, Lees AJ, Stern GM, Marmot MG (1984) Effect of l-dopa on course of Parkinson’s disease. Lancet 2:211–212

    PubMed  CAS  Google Scholar 

  • Dai W, Hale SL, Martin BJ et al (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112:214–223

    PubMed  Google Scholar 

  • David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933

    PubMed  CAS  Google Scholar 

  • De Bari C, Dell’Accio F, Vanlauwe J et al (2006) Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54:1209–1221

    PubMed  Google Scholar 

  • Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14:1771–1776

    PubMed  CAS  Google Scholar 

  • Dezawa M, Kanno H, Hoshino M et al (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113:1701–1710

    PubMed  CAS  Google Scholar 

  • Dezawa M, Ishikawa H, Itokazu Y et al (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309:314–317

    PubMed  CAS  Google Scholar 

  • Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    PubMed  CAS  Google Scholar 

  • Di Rocco G, Iachininoto MG, Tritarelli A et al (2006) Myogenic potential of adipose-tissue-derived cells. J Cell Sci 119:2945–2952

    PubMed  CAS  Google Scholar 

  • D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    PubMed  Google Scholar 

  • Dubovy P (2004) Schwann cells and endoneurial extracellular matrix molecules as potential cues for sorting of regenerated axons: a review. Anat Sci Int 79:198–208

    PubMed  CAS  Google Scholar 

  • Efe JA, Hilcove S, Kim J et al (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13:215–222

    PubMed  CAS  Google Scholar 

  • Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106:4057–4065

    PubMed  CAS  Google Scholar 

  • English K, Barry FP, Mahon BP (2008) Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 115:50–58

    PubMed  CAS  Google Scholar 

  • Faroni A, Mantovani C, Shawcross SG, Motta M, Terenghi G, Magnaghi V (2011) Schwann-like adult stem cells derived from bone marrow and adipose tissue express gamma-aminobutyric acid type B receptors. J Neurosci Res 89:1351–1362

    PubMed  CAS  Google Scholar 

  • Fernandes KJ, McKenzie IA, Mill P et al (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6:1082–1093

    PubMed  CAS  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    PubMed  CAS  Google Scholar 

  • Fibbe WE, Nauta AJ, Roelofs H (2007) Modulation of immune responses by mesenchymal stem cells. Ann N Y Acad Sci 1106:272–278

    PubMed  CAS  Google Scholar 

  • Freed CR, Breeze RE, Rosenberg NL et al (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 327:1549–1555

    PubMed  CAS  Google Scholar 

  • Gang EJ, Jeong JA, Hong SH et al (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 22:617–624

    PubMed  Google Scholar 

  • Gang EJ, Jeong JA, Han S, Yan Q, Jeon CJ, Kim H (2006) In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy 8:215–227

    PubMed  CAS  Google Scholar 

  • Geuna S, Fornaro M, Raimondo S, Giacobini-Robecchi MG (2010) Plasticity and regeneration in the peripheral nervous system. Ital J Anat Embryol 115:91–94

    PubMed  Google Scholar 

  • Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    PubMed  CAS  Google Scholar 

  • Hare GM, Evans PJ, Mackinnon SE et al (1992) Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast Reconstr Surg 89:251–258

    PubMed  CAS  Google Scholar 

  • Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305:90–93

    PubMed  CAS  Google Scholar 

  • Harvey AR, Plant GW, Tan MM (1995) Schwann cells and the regrowth of axons in the mammalian CNS: a review of transplantation studies in the rat visual system. Clin Exp Pharmacol Physiol 22:569–579

    PubMed  CAS  Google Scholar 

  • Hayase M, Kitada M, Wakao S et al (2009) Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 29:1409–1420

    PubMed  CAS  Google Scholar 

  • Hida N, Nishiyama N, Miyoshi S et al (2008) Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 26:1695–1704

    PubMed  CAS  Google Scholar 

  • Huang Y, Chen P, Zhang CB et al (2010) Kidney-derived mesenchymal stromal cells modulate dendritic cell function to suppress alloimmune responses and delay allograft rejection. Transplantation 90:1307–1311

    PubMed  CAS  Google Scholar 

  • Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25:101–121

    PubMed  CAS  Google Scholar 

  • Ide C, Nakai Y, Nakano N et al (2010) Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Brain Res 1332:32–47

    PubMed  CAS  Google Scholar 

  • Iguchi F, Nakagawa T, Tateya I et al (2003) Trophic support of mouse inner ear by neural stem cell transplantation. Neuroreport 14:77–80

    PubMed  Google Scholar 

  • Jiang L, Zhu JK, Liu XL, Xiang P, Hu J, Yu WH (2008) Differentiation of rat adipose tissue-derived stem cells into Schwann-like cells in vitro. Neuroreport 19:1015–1019

    PubMed  Google Scholar 

  • Jing L, Jia Y, Lu J et al (2011) MicroRNA-9 promotes differentiation of mouse bone mesenchymal stem cells into neurons by Notch signaling. Neuroreport 22:206–211

    PubMed  CAS  Google Scholar 

  • Kadivar M, Khatami S, Mortazavi Y, Shokrgozar MA, Taghikhani M, Soleimani M (2006) In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Biophys Res Commun 340:639–647

    PubMed  CAS  Google Scholar 

  • Kaewkhaw R, Scutt AM, Haycock JW (2011) Anatomical site influences the differentiation of adipose-derived stem cells for Schwann-cell phenotype and function. Glia 59:734–749

    PubMed  Google Scholar 

  • Kajstura J, Rota M, Whang B et al (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96:127–137

    PubMed  CAS  Google Scholar 

  • Kamada T, Koda M, Dezawa M et al (2005) Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord. J Neuropathol Exp Neurol 64:37–45

    PubMed  Google Scholar 

  • Kamada T, Koda M, Dezawa M et al (2010) Transplantation of human bone marrow stromal cell-derived Schwann cells reduces cystic cavity and promotes functional recovery after contusion injury of adult rat spinal cord. Neuropathology 31:48–58

    Google Scholar 

  • Kim BJ, Seo JH, Bubien JK, Oh YS (2002) Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport 13:1185–1188

    PubMed  Google Scholar 

  • Kim JW, Kim SY, Park SY et al (2004) Mesenchymal progenitor cells in the human umbilical cord. Ann Hematol 83:733–738

    PubMed  CAS  Google Scholar 

  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207:267–274

    PubMed  CAS  Google Scholar 

  • Kitada M, Dezawa M (2009) Induction system of neural and muscle lineage cells from bone marrow stromal cells; a new strategy for tissue reconstruction in degenerative diseases. Histol Histopathol 24:631–642

    PubMed  Google Scholar 

  • Kordower JH, Freeman TB, Snow BJ et al (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 332:1118–1124

    PubMed  CAS  Google Scholar 

  • Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729

    PubMed  CAS  Google Scholar 

  • Kreso A, O’Brien CA (2008) Colon cancer stem cells. Curr Protoc Stem Cell Biol 7:3.1.1–3.1.12

  • Kromer LF, Cornbrooks CJ (1987) Identification of trophic factors and transplanted cellular environments that promote CNS axonal regeneration. Ann N Y Acad Sci 495:207–224

    PubMed  CAS  Google Scholar 

  • Kronsteiner B, Peterbauer-Scherb A, Grillari-Voglauer R et al (2011) Human mesenchymal stem cells and renal tubular epithelial cells differentially influence monocyte-derived dendritic cell differentiation and maturation. Cell Immunol 267:30–38

    PubMed  CAS  Google Scholar 

  • Kucia M, Reca R, Campbell FR et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    PubMed  CAS  Google Scholar 

  • Kuroda Y, Kitada M, Wakao S et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 107:8639–8643

    PubMed  CAS  Google Scholar 

  • Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    PubMed  CAS  Google Scholar 

  • Liechty KW, MacKenzie TC, Shaaban AF et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    PubMed  CAS  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    PubMed  CAS  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    PubMed  CAS  Google Scholar 

  • Lindvall O, Sawle G, Widner H et al (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 35:172–180

    PubMed  CAS  Google Scholar 

  • Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77:174–191

    PubMed  CAS  Google Scholar 

  • Lundkvist J, Lendahl U (2001) Notch and the birth of glial cells. Trends Neurosci 24:492–494

    PubMed  CAS  Google Scholar 

  • Magatti M, De Munari S, Vertua E et al (2009) Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transpl 18:899–914

    Google Scholar 

  • Mahmood A, Lu D, Chopp M (2004) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 21:33–39

    PubMed  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    PubMed  CAS  Google Scholar 

  • Masaki I, Yonemitsu Y, Yamashita A et al (2002) Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 90:966–973

    PubMed  CAS  Google Scholar 

  • Matsuse D, Kitada M, Kohama M et al (2010) Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration. J Neuropathol Exp Neurol 69:973–985

    PubMed  CAS  Google Scholar 

  • Matsuse D, Kitada M, Ogura F et al (2011) Combined transplantation of bone marrow stromal cell-derived neural progenitor cells with a collagen sponge and basic fibroblast growth factor releasing microspheres enhances recovery after cerebral ischemia in rats. Tissue Eng Part A 17:1993–2004

    PubMed  CAS  Google Scholar 

  • Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621

    PubMed  CAS  Google Scholar 

  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    PubMed  CAS  Google Scholar 

  • Middleton J, Americh L, Gayon R et al (2005) A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146. J Pathol 206:260–268

    PubMed  CAS  Google Scholar 

  • Mimura T, Dezawa M, Kanno H, Yamamoto I (2005) Behavioral and histological evaluation of a focal cerebral infarction rat model transplanted with neurons induced from bone marrow stromal cells. J Neuropathol Exp Neurol 64:1108–1117

    PubMed  Google Scholar 

  • Mitchell KE, Weiss ML, Mitchell BM et al (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60

    PubMed  CAS  Google Scholar 

  • Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109:199–209 (discussion 210-191)

    Google Scholar 

  • Morrison SJ, Perez SE, Qiao Z et al (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510

    PubMed  CAS  Google Scholar 

  • Murga M, Yao L, Tosato G (2004) Derivation of endothelial cells from CD34-umbilical cord blood. Stem Cells 22:385–395

    PubMed  CAS  Google Scholar 

  • Musina RA, Belyavski AV, Tarusova OV, Solovyova EV, Sukhikh GT (2008) Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med 145:539–543

    PubMed  CAS  Google Scholar 

  • Nagane K, Kitada M, Wakao S, Dezawa M, Tabata Y (2009) Practical induction system for dopamine-producing cells from bone marrow stromal cells using spermine–pullulan-mediated reverse transfection method. Tissue Eng Part A 15:1655–1665

    PubMed  CAS  Google Scholar 

  • Nagao M, Sugimori M, Nakafuku M (2007) Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. Mol Cell Biol 27:3982–3994

    PubMed  CAS  Google Scholar 

  • Nagoshi N, Shibata S, Kubota Y et al (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2:392–403

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Wang X, Xu C et al (2007) Xenotransplantation of long-term-cultured swine bone marrow-derived mesenchymal stem cells. Stem Cells 25:612–620

    PubMed  CAS  Google Scholar 

  • Nakano N, Nakai Y, Seo TB et al (2010) Characterization of conditioned medium of cultured bone marrow stromal cells. Neurosci Lett 483:57–61

    PubMed  CAS  Google Scholar 

  • Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108:2114–2120

    PubMed  CAS  Google Scholar 

  • Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77:192–204

    PubMed  CAS  Google Scholar 

  • Niemeyer P, Krause U, Kasten P et al (2006) Mesenchymal stem cell-based HLA-independent cell therapy for tissue engineering of bone and cartilage. Curr Stem Cell Res Ther 1:21–27

    PubMed  CAS  Google Scholar 

  • Nishimura EK, Jordan SA, Oshima H et al (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416:854–860

    PubMed  CAS  Google Scholar 

  • Ohta M, Suzuki Y, Noda T et al (2004a) Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 187:266–278

    PubMed  CAS  Google Scholar 

  • Ohta M, Suzuki Y, Noda T et al (2004b) Implantation of neural stem cells via cerebrospinal fluid into the injured root. Neuroreport 15:1249–1253

    PubMed  Google Scholar 

  • Oswald J, Boxberger S, Jorgensen B et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    PubMed  Google Scholar 

  • Oyagi S, Hirose M, Kojima M et al (2006) Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol 44:742–748

    PubMed  CAS  Google Scholar 

  • Pang ZP, Yang N, Vierbuchen T et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223

    PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  • Pittenger MF, Mosca JD, McIntosh KR (2000) Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251:3–11

    PubMed  CAS  Google Scholar 

  • Pournasr B, Mohamadnejad M, Bagheri M et al (2011) In vitro differentiation of human bone marrow mesenchymal stem cells into hepatocyte-like cells. Arch Iran Med 14:244–249

    PubMed  Google Scholar 

  • Prindull G, Zipori D (2004) Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood 103:2892–2899

    PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    PubMed  CAS  Google Scholar 

  • Qian Q, Qian H, Zhang X et al (2011) 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev [Epub ahead of print]

  • Qu R, Li Y, Gao Q et al (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27:355–363

    PubMed  Google Scholar 

  • Qu C, Mahmood A, Lu D, Goussev A, Xiong Y, Chopp M (2008) Treatment of traumatic brain injury in mice with marrow stromal cells. Brain Res 1208:234–239

    PubMed  CAS  Google Scholar 

  • Raisman G (1997) Use of Schwann cells to induce repair of adult CNS tracts. Rev Neurol (Paris) 153:521–525

    CAS  Google Scholar 

  • Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83:71–76

    PubMed  Google Scholar 

  • Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system. Haffner, New York

  • Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    PubMed  Google Scholar 

  • Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213

    PubMed  Google Scholar 

  • Ratajczak MZ, Kucia M, Majka M, Reca R, Ratajczak J (2004) Heterogeneous populations of bone marrow stem cells—are we spotting on the same cells from the different angles? Folia Histochem Cytobiol 42:139–146

    Google Scholar 

  • Reubinoff BE, Itsykson P, Turetsky T et al (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    PubMed  CAS  Google Scholar 

  • Rider DA, Nalathamby T, Nurcombe V, Cool SM (2007) Selection using the alpha-1 integrin (CD49a) enhances the multipotentiality of the mesenchymal stem cell population from heterogeneous bone marrow stromal cells. J Mol Histol 38:449–458

    PubMed  CAS  Google Scholar 

  • Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    PubMed  Google Scholar 

  • Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8

    Google Scholar 

  • Safford KM, Hicok KC, Safford SD et al (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379

    PubMed  CAS  Google Scholar 

  • Saito F, Nakatani T, Iwase M et al (2008) Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma 64:53–59

    PubMed  Google Scholar 

  • Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH (1999) Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126:4017–4026

    PubMed  CAS  Google Scholar 

  • Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    PubMed  CAS  Google Scholar 

  • Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE (2009) Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One 4:e6498

    PubMed  Google Scholar 

  • Sato K, Ozaki K, Oh I et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234

    PubMed  CAS  Google Scholar 

  • Schena F, Gambini C, Gregorio A et al (2010) Interferon-gamma-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum 62:2776–2786

    PubMed  CAS  Google Scholar 

  • Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475:390–393

    PubMed  CAS  Google Scholar 

  • Seko A, Nitta N, Sonoda A et al (2009) Vascular regeneration by repeated infusions of basic fibroblast growth factor in a rabbit model of hind-limb ischemia. Am J Roentgenol 192:W306–W310

    Google Scholar 

  • Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M (2007) Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun 359:915–920

    PubMed  CAS  Google Scholar 

  • Snykers S, De Kock J, Rogiers V, Vanhaecke T (2009) In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells 27:577–605

    PubMed  CAS  Google Scholar 

  • Someya Y, Koda M, Dezawa M et al (2008) Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord. J Neurosurg Spine 9:600–610

    PubMed  Google Scholar 

  • Sorrell JM, Caplan AI (2004) Fibroblast heterogeneity: more than skin deep. J Cell Sci 117:667–675

    PubMed  CAS  Google Scholar 

  • Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490

    PubMed  CAS  Google Scholar 

  • Stromberg I, Bjorklund L, Johansson M et al (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 124:401–412

    PubMed  CAS  Google Scholar 

  • Tabera S, Perez-Simon JA, Diez-Campelo M et al (2008) The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 93:1301–1309

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  • Tang DQ, Cao LZ, Burkhardt BR et al (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53:1721–1732

    PubMed  CAS  Google Scholar 

  • Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    PubMed  CAS  Google Scholar 

  • Teramachi M, Nakamura T, Yamamoto Y, Kiyotani T, Takimoto Y, Shimizu Y (1997) Porous-type tracheal prosthesis sealed with collagen sponge. Ann Thorac Surg 64:965–969

    PubMed  CAS  Google Scholar 

  • Thomas ED (2000) Landmarks in the development of hematopoietic cell transplantation. World J Surg 24:815–818

    PubMed  CAS  Google Scholar 

  • Timper K, Seboek D, Eberhardt M et al (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341:1135–1140

    PubMed  CAS  Google Scholar 

  • Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    PubMed  CAS  Google Scholar 

  • Tyndall A, Walker UA, Cope A et al (2007) Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res Ther 9:301

    PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36:2566–2573

    PubMed  CAS  Google Scholar 

  • Varejao AS, Meek MF, Ferreira AJ, Patricio JA, Cabrita AM (2001) Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods 108:1–9

    PubMed  CAS  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    PubMed  CAS  Google Scholar 

  • Wakao S, Hayashi T, Kitada M et al (2010) Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 223:537–547

    PubMed  CAS  Google Scholar 

  • Wakao S, Kitada M, Kuroda Y et al (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci USA 108:9875–9880

    PubMed  CAS  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    PubMed  CAS  Google Scholar 

  • Wang HS, Hung SC, Peng ST et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    PubMed  Google Scholar 

  • Wechsler LR, Kondziolka D (2003) Cell therapy: replacement. Stroke 34:2081–2082

    PubMed  Google Scholar 

  • Wei A, Tao H, Chung SA, Brisby H, Ma DD, Diwan AD (2009) The fate of transplanted xenogeneic bone marrow-derived stem cells in rat intervertebral discs. J Orthop Res 27:374–379

    PubMed  Google Scholar 

  • Wojakowski W, Kucia M, Zuba-Surma E et al (2011) Very small embryonic-like stem cells in cardiovascular repair. Pharmacol Ther 129:21–28

    PubMed  CAS  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    PubMed  CAS  Google Scholar 

  • Wu S, Suzuki Y, Kitada M et al (2002a) New method for transplantation of neurosphere cells into injured spinal cord through cerebrospinal fluid in rat. Neurosci Lett 318:81–84

    PubMed  CAS  Google Scholar 

  • Wu S, Suzuki Y, Noda T et al (2002b) Immunohistochemical and electron microscopic study of invasion and differentiation in spinal cord lesion of neural stem cells grafted through cerebrospinal fluid in rat. J Neurosci Res 69:940–945

    PubMed  CAS  Google Scholar 

  • Wu S, Suzuki Y, Ejiri Y et al (2003) Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 72:343–351

    PubMed  CAS  Google Scholar 

  • Yan X, Lv A, Xing Y et al (2011) Inhibition of p53-p21 pathway promotes the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Mol Cell Biochem 354:21–28

    PubMed  CAS  Google Scholar 

  • Yanjie J, Jiping S, Yan Z, Xiaofeng Z, Boai Z, Yajun L (2007) Effects of Notch-1 signalling pathway on differentiation of marrow mesenchymal stem cells into neurons in vitro. Neuroreport 18:1443–1447

    PubMed  Google Scholar 

  • Yoshihara T, Ohta M, Itokazu Y et al (2007) Neuroprotective effect of bone marrow-derived mononuclear cells promoting functional recovery from spinal cord injury. J Neurotrauma 24:1026–1036

    PubMed  Google Scholar 

  • Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761

    PubMed  CAS  Google Scholar 

  • Zhang J, Li Y, Chen J et al (2005) Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195:16–26

    PubMed  CAS  Google Scholar 

  • Zhang J, Li Y, Lu M et al (2006) Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J Neurosci Res 84:587–595

    PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is extremely grateful to Prof. Mari Dezawa of Tohoku University Graduate School of Medicine for her continued support and encouragement. This work is dedicated to all the collaborators whose works are cited in this review article. The author also thanks the lab members in the Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, for their valuable discussion and collaboration, as well as for technical and clerical assistance. I would also like to express my gratitude to my beloved parents, wife, and children for their endearing support.

Conflict of interest

The author declares no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Kitada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitada, M. Mesenchymal cell populations: development of the induction systems for Schwann cells and neuronal cells and finding the unique stem cell population. Anat Sci Int 87, 24–44 (2012). https://doi.org/10.1007/s12565-011-0128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-011-0128-4

Keywords

Navigation