Skip to main content
Log in

Microhabitat differences in crab assemblage structures in a subtropical mangrove estuary on Iriomote Island, southern Japan

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Crab assemblage structures in sandy flat, muddy flat and mangrove forest microhabitats in a mangrove estuary of the Urauchi River, Iriomote Island, southern Japan, differed clearly among the three microhabitats, species and individual numbers being greater inside the mangrove forest than on the flats. A similarity index showed distinct differences in species composition among the microhabitat assemblages, primarily due to the differential distributions of dominant species, such as the soldier crab Mictyris guinotae, sentinel crab Macrophthalmus convexus and sesarmid crab Perisesarma bidens. A canonical correspondence analysis indicated that the differences likely arose from among-microhabitat differences in the physical environment, the mangrove forest being characterized mainly by structurally complex mangrove roots, lower soil porewater temperatures and higher relative substrate elevation, the sandy flat by lower organic content of the sediment and higher porewater oxygen amount, and the muddy flat by higher levels of sediment water and organic material. The findings suggested that microhabitat-related physical differences are important factors determining crab distribution patterns in mangrove estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  2. Lee SY (2008) Mangrove macrobenthos: assemblages, services, and linkages. J Sea Res 59:16–29

    Article  Google Scholar 

  3. Sheaves M, Molony B (2000) Short-circuit in the mangrove food chain. Mar Ecol Prog Ser 199:97–109

    Article  Google Scholar 

  4. Kathiresan K (2012) Importance of mangrove ecosystem. Int J Mar Sci 2:70–89

    Google Scholar 

  5. Emmerson WD, McGwynne LE (1992) Feeding and assimilation of mangrove leaves by the crab Sesarma meinerti de Man in relation to leaf-litter production in Mgazana, a warm–temperate southern African mangrove swamp. J Exp Mar Biol Ecol 157:41–53

    Article  Google Scholar 

  6. Micheli F (1993) Feeding ecology of mangrove crabs in North Eastern Australia: mangrove litter consumption by Sesarma messa and Sesarma smithii. J Exp Mar Biol Ecol 171:165–186

    Article  Google Scholar 

  7. Ridd PV (1996) Flow through animal burrows in mangrove creeks. Estuar Coast Shelf Sci 43:617–625

    Article  Google Scholar 

  8. Lee SY (1998) Ecological role of grapsid crabs in mangrove ecosystems: a review. Mar Freshwater Res 49:335–343

    Article  Google Scholar 

  9. Stieglitz T, Ridd P, Müller P (2000) Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp. Hydrobiologia 421:69–76

    Article  Google Scholar 

  10. Kristensen E (2008) Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 59:30–43

    Article  Google Scholar 

  11. Golley F, Odum HT, Wilson RF (1962) The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43:9–19

    Article  CAS  Google Scholar 

  12. Hill BJ, Williams MJ, Dutton P (1982) Distribution of juvenile, subadult and adult Scylla serrata (Crustacea: Portunidae) on tidal flats in Australia. Mar Biol 69:117–120

    Article  Google Scholar 

  13. Jones DA (1984) Crabs of the mangal ecosystem. In: Por FD, Dor I (eds) Hydrobiology of the mangal. Junk, the Hague, pp 89–109

    Google Scholar 

  14. Tan CGS, Ng PKL (1994) An annotated checklist of mangrove brachyuran crabs from Malaysia and Singapore. Hydrobiologia 285:75–84

    Article  Google Scholar 

  15. Kathiresan K (2000) A review of studies on Pichavaram mangrove, Southeast India. Hydrobiologia 430:185–205

    Article  Google Scholar 

  16. Hsieh HL (1995) Spatial and temporal patterns of polychaete communities in a subtropical mangrove swamp: influences of sediment and microhabitat. Mar Ecol Prog Ser 127:157–167

    Article  Google Scholar 

  17. Kon K, Kurokura H, Tongnunui P (2011) Influence of a microhabitat on the structuring of the benthic macrofaunal community in a mangrove forest. Hydrobiologia 671:205–216

    Article  Google Scholar 

  18. Skov MW, Vannini M, Shunula JP, Hartnoll RG, Cannicci S (2002) Quantifying the density of mangrove crabs: Ocypodidae and Grapsidae. Mar Biol 141:725–732

    Article  Google Scholar 

  19. César II, Armendáriz LC, Becerra RV (2005) Bioecology of the fiddler crab Uca uruguayensis and the burrowing crab Chasmagnathus granulatus (Decapoda, Brachyura) in the Refugio de Vida Silvestre Bahía Samborombón, Argentina. Hydrobiologia 545:237–248

    Article  Google Scholar 

  20. Bezerra LEA, Dias CB, Santana GX, Matthews-Cascon H (2006) Spatial distribution of fiddler crabs (genus Uca) in a tropical mangrove of Northeast Brazil. Sci Mar 70:759–766

    Article  Google Scholar 

  21. Nanjo K, Nakamura Y, Horinouchi M, Kohno H, Sano M (2011) Predation risks for juvenile fishes in a mangrove estuary: a comparison of vegetated and unvegetated microhabitats by tethering experiments. J Exp Mar Biol Ecol 405:53–58

    Article  Google Scholar 

  22. Costa TM, Negreiros-Fransozo ML (2002) Population biology of Uca thayeri Rathbun, 1900 (Brachyura, Ocypodidae) in a subtropical South American mangrove area: results from transect and catch-per-unit-effort techniques. Crustaceana 75:1201–1218

    Article  Google Scholar 

  23. Leme MHA (2002) A comparative analysis of the population biology of the mangrove crabs Aratus pisonii and Sesarma rectum (Brachyura, Grapsidae) from the north coast of São Paulo state, Brazil. J Crustac Biol 22:553–557

    Article  Google Scholar 

  24. Ferreira TO, Otero XL, Vidal-Torrado P, Macías F (2007) Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma 142:36–46

    Article  CAS  Google Scholar 

  25. van Gils JA, Spaans B, Dekinga A, Piersma T (2006) Foraging in a tidally structured environment by red knots (Calidris canutus): ideal, but not free. Ecology 87:1189–1202

    Article  PubMed  Google Scholar 

  26. Kanaya G, Kikuchi E (2008) Spatial changes in a macrozoobenthic community along environmental gradients in a shallow brackish lagoon facing Sendai Bay, Japan. Estuar Coast Shelf Sci 78:674–684

    Article  Google Scholar 

  27. Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. Primer-E, Plymouth

    Google Scholar 

  28. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  29. ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  30. Palmer MW (1993) Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74:2215–2230

    Article  Google Scholar 

  31. ter Braak (1988) CANOCO: a FORTRAN program for canonial community ordination by [partial][detrended][canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Agricultural Mathematics Group, Wageningen

  32. Sasekumar A (1974) Distribution of macrofauna on a Malayan mangrove shore. J Anim Ecol 43:51–69

    Article  Google Scholar 

  33. Davie P (1982) A preliminary checklist of Brachyura (Crustacea: Decapoda) associated with Australian mangrove forests. Operculum 5:204–207

    Google Scholar 

  34. McGuinness KA (1994) The climbing behaviour of Cerithidea anticipata (Mollusca: Gastropoda): the roles of physical and biological factors. Aust J Ecol 19:283–289

    Article  Google Scholar 

  35. McIvor CC, Smith III TJ (1995) Differences in the crab fauna of mangrove areas at a Southwest Florida and a Northeast Australia location: implications for leaf litter processing. Estuaries 18:591–597

    Article  Google Scholar 

  36. Acosta CA, Butler IVMJ (1997) Role of mangrove habitat as a nursery for juvenile spiny lobster, Panulirus argus, in Belize. Mar Freshwater Res 48:721–727

    Article  Google Scholar 

  37. Nobbs M (2003) Effects of vegetation differ among three species of fiddler crabs (Uca spp.). J Exp Mar Biol Ecol 284:41–50

    Article  Google Scholar 

  38. Kon K, Kurokura H, Tongnunui P (2010) Effects of the physical structure of mangrove vegetation on a benthic faunal community. J Exp Mar Biol Ecol 383:171–180

    Article  Google Scholar 

  39. Eshky AA, Atkinson RJA, Taylor AC (1995) Physiological ecology of crabs from Saudi Arabian mangrove. Mar Ecol Prog Ser 126:83–95

    Article  Google Scholar 

  40. Salmon M (1984) The courtship, aggression and mating system of a “primitive” fiddler crab (Uca vocans: Ocypodidae). Trans Zool Soc Lond 37:1–50

    Article  Google Scholar 

  41. Wilson KA (1989) Ecology of mangrove crabs: predation, physical factors and refuges. Bull Mar Sci 44:263–273

    Google Scholar 

  42. Macia A, Abrantes KGS, Paula J (2003) Thorn fish Terapon jarbua (Forskål) predation on juvenile white shrimp Penaeus indicus H. Milne Edwards and brown shrimp Metapenaeus monoceros (Fabricius): the effect of turbidity, prey density, substrate type and pneumatophore density. J Exp Mar Biol Ecol 291:29–56

    Article  Google Scholar 

  43. Meager JJ, Williamson I, Loneragan NR, Vance DJ (2005) Habitat selection of juvenile banana prawns, Penaeus merguiensis de Man: testing the roles of habitat structure, predators, light phase and prawn size. J Exp Mar Biol Ecol 324:89–98

    Article  Google Scholar 

  44. Irie M, Kawachi A, Ishigami T, Ishikawa T (2005) Study on habitat and territorial competition of crabs which range on Amparu tidal lagoon. Environ Syst Res 33:55–62 (in Japanese with English abstract)

    Article  Google Scholar 

  45. Kawachi A, Ishikawa T, Irie M (2017) Population dynamics of the soldier crab Mictyris guinotae (Brachyura: Mictyridae) in Amparu Tidal Lagoon on Ishigaki Island, Japan. Reg Stud Mar Sci 14:63–72

    Article  Google Scholar 

  46. Ono Y (1965) On the ecological distribution of ocypoid crabs in the estuary. Mem Fac Sci Kyushu Univ Ser E (Biology) 4:1–60

    Google Scholar 

  47. Tai A-Y, Song Y-Z (1984) Macrophthalmus (Decapoda, Brachyura) of the seas of China. Crustaceana 46:76–86

    Article  Google Scholar 

  48. Schuwerack PMM, Barnes RSK, Underwood GJC, Jones PW (2006) Gender and species differences in sentinel crabs (Macrophthalmus) feeding on an Indonesian mudflat. J Crustac Biol 26:119–123

    Article  Google Scholar 

  49. Shih HT, Naruse T, Ng PKL (2010) Uca jocelynae sp. nov., a new species of fiddler crab (Crustacea: Brachyura: Ocypodidae) from the Western Pacific. Zootaxa 2337:47–62

    Google Scholar 

  50. Hartnoll RG (1973) Factors affecting the distribution and behaviour of the crab Dotilla fenestrata on East African shores. Estuar Coast Mar Sci 1:137–152

    Article  Google Scholar 

  51. Macnae W (1968) A general account of the fauna and flora of mangrove swamps and forests in the Indo-West-Pacific region. Adv Mar Biol 6:73–270

    Article  Google Scholar 

  52. Henmi Y (1989) Factors influencing drove formation and foraging efficiency in Macrophthalmus japonicus (De Haan) (Crustacea: Ocypodidae). J Exp Mar Biol Ecol 131:255–265

    Article  Google Scholar 

  53. Morton B, Morton J (1983) The sea shore ecology of Hong Kong. Hong Kong University Press, Hong Kong

    Google Scholar 

  54. Tam NFY, Wong YS (2002) Conservation and sustainable exploitation of mangroves in Hong Kong. Trees 16:224–229

    Article  Google Scholar 

  55. Davie PJF, Kosuge T (1995) A new species of Tmethypocoelis (Crustacea: Brachyura: Ocypodidae) from Japan. Raffles Bull Zool 43:207–215

    Google Scholar 

  56. Kon K, Kurokura H, Tongnunui P (2009) Do mangrove root structures function to shelter benthic macrofauna from predators? J Exp Mar Biol Ecol 370:1–8

    Article  Google Scholar 

  57. Alexander SJ, Ewer DW (1969) A comparative study of some aspects of the biology and ecology of Sesarma catenata Ort. and Cyclograpsus punctatus M. Edw., with additional observations on Sesarma meinerti De Man. Zool Afr 4:1–35

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ken Sakihara, Akira Mizutani and the Okinawa Regional Research Center, Tokai University for assistance with fieldwork. Our thanks are also due to Hsi-Te Shih and Tohru Naruse for crab species identification, and to Seiya Kaneko and Tomohiro Aoki for providing useful information on the data analyses. Constructive comments on the manuscript from Ken Okamoto, Shigeru Aoki, Graham Hardy and three anonymous reviewers were much appreciated. This study was founded by a Sasakawa Scientific Research Grant from The Japan Science Society (no. 28-730), a grant from the Research Institute of Marine Invertebrates (no. 2016KO-8) and a Grant-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (no. 26252027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Kawaida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaida, S., Nanjo, K., Kanai, T. et al. Microhabitat differences in crab assemblage structures in a subtropical mangrove estuary on Iriomote Island, southern Japan. Fish Sci 83, 1007–1017 (2017). https://doi.org/10.1007/s12562-017-1139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-017-1139-4

Keywords

Navigation