Skip to main content

Advertisement

Log in

Growth and survival of juvenile sporophytes of the kelp Ecklonia cava in response to different nitrogen and temperature regimes

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Deforestation of the kelp Ecklonia cava has been widely reported in Japan, and may be due to physiological stress caused by warm seawater temperatures and low nitrogen availability. To test this hypothesis, we examined the effects of temperature (20, 26, 28, and 30 °C) and nitrogen conditions (seawater enriched with 25 % PESI vs. non-enriched seawater) on photosynthesis, growth and survival, and nitrogen and chlorophyll a content of juvenile sporophytes (3–4 cm) along the coast of the Izu Peninsula, Japan. The juvenile sporophytes cultured in enriched medium showed significantly greater photosynthetic activity and relative growth rates than those cultured in non-enriched seawater at 20–28 °C, likely because of the much higher nitrogen and chlorophyll a content in the enriched medium. A significant effect of temperature on photosynthesis and relative growth rates was also detected under both nitrogen conditions. However, in contrast to the excellent survival exhibited in the enriched medium, dead juveniles were observed in non-enriched seawater at all temperatures, and survival rates decreased with increasing temperature. These results reveal that growth and survival of E. cava juvenile sporophytes are negatively affected by low nitrogen availability and high seawater temperature, which may result in deforestation of this kelp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schiel DR, Foster MS (1986) The structure of subtidal algal stands in temperate waters. Oceanogr Mar Biol Annu Rev 24:265–307

    Google Scholar 

  2. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Article  Google Scholar 

  3. Smale DA, Burrows MT, Moore PJ, Connor N, Hawkins SJ (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evol 3:4016–4038

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kirihara S, Nakamura T, Kon N, Fujita D, Notoya M (2006) Recent fluctuations in distribution and biomass of cold and warm temperature species of Laminarialean algae at Cape Ohma, northern Honshu, Japan. J Appl Phycol 18:521–527

    Article  Google Scholar 

  5. Suzuki S, Furuya K, Kawai T, Takeuchi I (2008) Effect of seawater temperature on the productivity of Laminaria japonica in the Uwa Sea, southern Japan. J Appl Phycol 20:833–844

    Article  Google Scholar 

  6. Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NJ, Hosie GW, Last PR, Ling SD, Thomas JM, Miller K, Pecl GT, RichardsonI AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd SA, Slotwinski A, Swadling KM, Taw N (2011) Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Biol Ecol 400:17–32

    Article  Google Scholar 

  7. Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16

    Article  Google Scholar 

  8. Díez I, Muguerza N, Santolaria A, Ganzedo U, Gorostiaga JM (2012) Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar Coast Shelf Sci 99:108–120

    Article  Google Scholar 

  9. Moy FE, Christie H (2012) Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar Biol Res 8:309–321

    Article  Google Scholar 

  10. Jackson GA (1977) Nutrients and production of the giant kelp Macrocystis pyrifera off southern California. Limnol Oceanogr 22:979–995

    Article  CAS  Google Scholar 

  11. Zimmerman RC, Kremer JN (1984) Episodic nutrient supply to a kelp forest ecosystem in Southern California. J Mar Res 42:591–604

    Article  Google Scholar 

  12. North WJ, Zimmerman RC (1984) Influences of macronutrients and water temperature on summertime survival of Macrocystis canopies. Hydrobiologia 116(117):419–424

    Article  Google Scholar 

  13. Dean TA, Jacobsen FR (1986) Nutrient-limited growth of juvenile kelp, Macrocystis pyrifera, during the 1982–1984 “El Niño” in southern California. Mar Biol 90:597–601

    Article  Google Scholar 

  14. Tegner MJ, Dayton PK, Edwards PB, Riser KL (1997) Large-scale, low-frequency oceanographic effects on kelp forest succession: a tale of two cohorts. Mar Ecol Prog Ser 146:117–134

    Article  Google Scholar 

  15. Dayton PK, Tegner MJ, Parnell PE, Edward PB (1999) Temporal and spatial scales of kelp demography: the role of oceanographic climate. Ecol Monogr 69:219–250

    Article  Google Scholar 

  16. Hernández-Carmona G, Robledo D, Serviere-Zaragoza E (2001) Effect of nutrient availability on Macrocystis pyrifera recruitment and survival near its southern limit off Baja California. Bot Mar 44:221–229

  17. Bolton JJ, Lünning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94

    Article  Google Scholar 

  18. Morita T, Kurashima A, Maegawa M (2003) Temperature requirements for the growth and maturation of the gametophytes of Undaria pinnatifida and U. undarioides (Laminariales, Phaeophyta). Phycol Res 51:154–160

    Google Scholar 

  19. Komazawa I, Sakanishi Y, Tanaka J (2015) Temperature requirements for growth and maturation of the warm temperature kelp Eckloniopsis radicosa (Laminariales, Phaeophyta). Phycol Res 63:64–71

    Article  Google Scholar 

  20. Hoffmann AJ, Avila M, Santelices B (1984) Interactions of nitrate and phosphate on the development of microscopic stages of Lessonia nigrescens Bory (Phaeophyta). J Exp Mar Biol Ecol 78:177–186

    Article  CAS  Google Scholar 

  21. Mizuta H, Narumi H, Yamamoto H (2001) Effects of nitrate and phosphate on the growth and maturation of gametophytes of Laminaria religiosa Miyabe (Phaeophyceae). Suisanzoshoku 49:175–180

    Google Scholar 

  22. Carney LT, Edwards MS (2010) Role of nutrient fluctuations and delayed development in gametophyte reproduction by Macrocystis pyrifera (Phaeophyceae) in southern California. J Phycol 46:987–996

    Article  Google Scholar 

  23. Dean TA, Jacobsen FR (1984) Growth of juvenile Macrocystis pyrifera (Laminariales) in relation to environmental factors. Mar Biol 83:301–311

    Article  Google Scholar 

  24. Kawashima S (1993) An illustrated book of Japanese Laminariales. Kita Nihon Kaiyo Center, Sapporo (in Japanese)

    Google Scholar 

  25. Iwahashi Y, Inaba S, Fushimi H, Sasaki T, Osuga H (1979) Ecological studies on Eisenia and Ecklonia in the coast of Izu Peninsula-IV. The distribution and characteristics of kelp stand. Bull Shizuoka Prefect Fish Exp Stn 13:75–82 (in Japanese)

    Google Scholar 

  26. Ohno M (1985) Marine forest–its ecology and constructing technology. Kaiyoukagaku 17:706–713 (in Japanese)

    Google Scholar 

  27. Yokohama Y, Tanaka J, Chihara M (1987) Productivity of the Ecklonia cava community in a bay of Izu Peninsula on the Pacific coast of Japan. Bot Mag Tokyo 100:129–141

    Article  Google Scholar 

  28. Tominaga H, Serisawa Y, Ohno M (2004) Seasonal changes in net production of the bladelets and size of the proximal blade of Ecklonia cava in Tosa Bay, Kochi Prefecture. Jpn J Phycol 52:13–19 (in Japanese)

    Google Scholar 

  29. Arakawa H, Ido M, Arimoto M, Agatsuma Y (2013) Combined effects of high water temperature and low flow velocity on survival of brown algae Eisenia bicyclis and Ecklonia cava. Can J Plant Prot 1(4):125–128

    Google Scholar 

  30. Nakayama Y, Arai S (1999) Grazing of the brown alga Ecklonia cava by three herbivorous fishes on the coast of Nakagi, South Izu, central Japan. Jpn J Phycol 47:105–112 (in Japanese)

    Google Scholar 

  31. Tatewaki M (1966) Formation of a crustose sporophyte with unilocular sporangia in Scytosiphon lomentaria. Phycologia 6:62–66

    Article  Google Scholar 

  32. Yokohama Y, Tanaka J, Chihara M (1987) Productivity of the Ecklonia cava community in a Bay of Izu Peninsula on the Pacific coast of Japan. Bot Mag Tokyo 100:129–141

    Article  Google Scholar 

  33. Bird NL, Chen LCM, Mclachlan J (1979) Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta) and Fucus serratus (Fucales, Phaeophyta). Bot Mar 22:521–527

  34. Ohno M, Largo DB, Ikumoto T (1994) Growth rate, carrageenan yield and gel properties of cultured kappa-carrageenan producing red alga Kappaphycus alvarezii (Doty) Doty in the subtropical waters of Shikoku, Japan. J Appl Phycol 6:1–5

    Article  Google Scholar 

  35. Yokohama Y, Katayama N, Furuya K (1986) An improved type of “Product-meter”, a differential gas-volumeter, and its application to measuring photosynthesis of seaweeds. Jpn J Phycol 34:37–42 (in Japanese)

    Google Scholar 

  36. Duarte P, Ferreira JG (1995) Seasonal adaptation and short-term metabolic responses of Gelidium sesquipedale to varying light and temperature. Mar Ecol Prog Ser 121:289–300

    Article  Google Scholar 

  37. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80 % acetone. Plant Physiol 77:483–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wheeler PA, North WJ (1980) Effect of nitrogen supply on nitrogen content and growth rates of juvenile Macrocystis pyrifera sporophytes. J Phycol 16:577–582

    Article  CAS  Google Scholar 

  39. Deysher LE, Dean TA (1986) In situ recruitment of sporophytes of giant kelp Macrocystis pyrifera (L.) Agardh CA: effects of physical factors. J Exp Mar Biol Ecol 103:41–63

    Article  Google Scholar 

  40. Gerard VA (1997) The role of nitrogen nutrition in high-temperature tolerance of the kelp Laminaria saccharina (Chromophyta). J Phycol 33:800–810

    Article  CAS  Google Scholar 

  41. Chapman ARO, Markham JW, Lünning K (1978) Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture. J Phycol 14:195–198

    Article  CAS  Google Scholar 

  42. Lapointe BE (1981) The effects of light and nitrogen on growth, pigment content and biochemical composition of Gracilaria foliifera V. Angustissima (Gigartinales, Rhodophyta). J Phycol 17:90–95

    Article  CAS  Google Scholar 

  43. Bird KT, Habig C, Debusk T (1982) Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta). J Phycol 18:344–348

    Article  CAS  Google Scholar 

  44. Lingnell A, Pedersen M (1987) Nitrogen metabolism in Gracilaria secundata (Harv.) Hydrobiologia151/152:431–441

  45. Levy I, Gantt E (1990) Development of photosynthetic activity in Porphyridium purpureum (Rhodophyta) following nitrogen starvation. J Phycol 26:62–68

    Article  CAS  Google Scholar 

  46. Dean PR, Hurd CL (2007) Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in southern New Zealand. J Phycol 43:1138–1148

    Article  CAS  Google Scholar 

  47. Gagné JA, Mann KH, Chapman ARO (1982) Seasonal patterns of growth and storage in Laminaria longicruris in relation to differing patterns of availability of nitrogen in the water. Mar Biol 69:91–101

    Article  Google Scholar 

  48. Serisawa Y, Yokohama Y, Aruga Y, Bellgrove A (2004) Photosynthetic performance of transplanted ecotypes of Ecklonia cava (Laminariales, Phaeophyta). J Appl Phycol 16:227–235

    Article  CAS  Google Scholar 

  49. Agatsuma Y, Endo H, Yoshida S, Ikemori C, Takeuchi Y, Fujishima H, Nakajima K, Sano M, Kanezaki N, Imai H, Yamamoto N, Kanahama H, Matsubara T, Takahashi S, Isogai T, Taniguchi K (2014) Enhancement of Saccharina kelp production by nutrient supply in the Sea of Japan off southwestern Hokkaido, Japan. J Appl Phycol 26:1845–1852

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Professor Emeritus K. Taniguchi (deceased) of Tohoku University for supporting this study. We also thank Professor O. Nishimura and Dr. K. Ito of Tohoku University for helping with the analysis of seawater nutrient concentrations and nitrogen and chlorophyll a content. This study was supported in part by a grant-in-aid from the Japanese Society for Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Endo, H., Nagaki, M. et al. Growth and survival of juvenile sporophytes of the kelp Ecklonia cava in response to different nitrogen and temperature regimes. Fish Sci 82, 623–629 (2016). https://doi.org/10.1007/s12562-016-0998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-016-0998-4

Keywords

Navigation