Skip to main content
Log in

Purification and characterization of metal-binding proteins from the digestive gland of the Japanese scallop Mizuhopecten yessoensis

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Marine bivalves accumulate high concentrations of potentially toxic heavy metals in their tissues. We report here our investigation of the accumulation patterns of cadmium (Cd), copper (Cu), and lead (Pb) in tissues of the Japanese scallop Mizuhopecten yessoensis after exposure to artificial seawater containing Cd, Cu, or Pb. Our results revealed that accumulation of these heavy metals by this scallop was associated with certain intracellular metal-binding proteins (MBPs). Cd was accumulated at higher concentrations than Cu and Pb, and most of the accumulated metals were detected in the digestive gland. MBPs from the digestive gland were purified and subjected to a preliminary characterization. Three proteins with molecular masses of approximately 28, 37, and 42 kDa, respectively, were isolated by gel-filtration and anion-exchange column chromatography. Characterization of the partial amino acid sequences of these proteins show high sequence similarity to MBPs and ion-transporters. Metalloprotein profiles in the digestive gland indicated that some proteins were upregulated after metal exposure, suggesting that these proteins are involved in mechanisms of metal accumulation and detoxification in M. yessoensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meng X, Tian X, Liu M, Nie G, Jiang K, Wang B, Wang L (2014) The transcriptomic response to copper exposure by the gill tissue of Japanese scallops (Mizuhopecten yessoensis) using deep-sequencing technology. Fish Shellfish Immunol 38:287–293

    Article  CAS  PubMed  Google Scholar 

  2. Zhu B, Gao KS, Wang KJ, Ke CH, Huang HQ (2012) Gonad differential proteins revealed with proteomics in oyster (Saccostrea cucullata) using alga as food contaminated with cadmium. Chemosphere 87:397–403

    Article  CAS  PubMed  Google Scholar 

  3. Bachère E, Gueguen Y, Gonzalez M, De Lorgeril J, Garnier J, Romestand B (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 198:149–168

    Article  PubMed  Google Scholar 

  4. Shan Z, Li H, Bao X, He C, Yu H, Liu W, Hou L, Wang J, Zhu D, Sui L (2011) A selenium-dependent glutathione peroxidase in the Japanese scallop, Mizuhopecten yessoensis: cDNA cloning, promoter sequence analysis and mRNA expression. Comp Biochem Physiol B 159:1–9

    Article  PubMed  Google Scholar 

  5. Metian M, Bustamante P, Hedouin L, Warnau M (2008) Accumulation of nine metals and one metalloid in the tropical scallop Comptopallium radula from coral reefs in New Caledonia. Environ Pollut 152:543–552

    Article  CAS  PubMed  Google Scholar 

  6. Shulkina VM, Presley BJ, Kavun VI (2003) Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environ Int 29:493–502

    Article  Google Scholar 

  7. Choi YK, Jo PG, Choi CY (2008) Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas. Comp Biochem Physiol C 147:286–292

    Google Scholar 

  8. Zhukovskaya AF, Belcheva NN, Slobodskova VS, Chelomin VP (2012) Metallothionein-like proteins induced by cadmium stress in the scallop Mizuhopecten yessoensis. Ocean Sci J 47:189–195

    Article  CAS  Google Scholar 

  9. Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  CAS  PubMed  Google Scholar 

  10. Grattarola M, Carloni M, Dondero F, Viarengo A, Vergani L (2006) Expression, purification and preliminary characterization of mussel (Mytilus galloprovincialis) metallothionein MT20. Mol Biol Rep 33:265–272

    Article  CAS  PubMed  Google Scholar 

  11. Paul-Pont I, Gonzalez P, Montero N, Montaudouin X, Baudrimont M (2012) Cloning, characterization and gene expression of a metallothionein isoform in the edible cockle Cerastoderma edule after cadmium or mercury exposure. Ecotoxicol Environ Saf 75:119–126

    Article  CAS  PubMed  Google Scholar 

  12. Bernal-Hernandez YY, Medina-Diaz IM, Robledo-Marenco Velazquez-Fernandez JB, Giron-Perez MI, Ortega-Cervantes L, Maldonado-Vazquez WA, Rojas-Garcia AE (2010) Acetylcholinesterase and metallothionein in oysters (Crassostrea corteziensis) from a subtropical Mexican Pacific estuary. Ecotoxicology 19:819–825

    Article  CAS  PubMed  Google Scholar 

  13. Tanguy A, Moraga D (2001) Cloning and characterization of a gene coding for a novel metallothionein in the Pacific oyster Crassostrea gigas (CgMT2): a case of adaptive response to metal-induced stress? Gene 273:123–130

    Article  CAS  PubMed  Google Scholar 

  14. Wang Q, Wang X, Wang X, Yang H, Liu B (2010) Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure. Aquat Toxicol 100:321–328

    Article  CAS  PubMed  Google Scholar 

  15. Fang Y, Yang H, Wang T, Liu B, Zhao H, Chen M (2010) Metallothionein and superoxide dismutase responses to sublethal cadmium exposure in the clam Mactra veneriformis. Comp Biochem Physiol C 151:325–333

    Google Scholar 

  16. Andreani G, Carpene E, Capranico G, Isani G (2011) Metallothionein cDNA cloning, metallothionein expression and heavy metals in Scapharca inaequivalvis along the Northern Adriatic coast of Italy. Ecotoxicol Environ Saf 74:366–372

    Article  CAS  PubMed  Google Scholar 

  17. Amiard JC, Journel R, Bacheley H (2008) Influence of field and experimental exposure of mussels (Mytilus sp.) to nickel and vanadium on metallothionein concentration. Comp Biochem Physiol C 147:378–385

    Google Scholar 

  18. Wang L, Song L, Ni D, Zhang H, Liu W (2009) Alteration of metallothionein mRNA in bay scallop Argopecten irradians under cadmium exposure and bacteria challenge. Comp Biochem Physiol C 149:50–57

    Google Scholar 

  19. He C, Yu H, Liu W, Su H, Shan Z, Bao X, Li Y, Fu L, Gao X (2012) A goose-type lysozyme gene in Japanese scallop (Mizuhopecten yessoensis): cDNA cloning, mRNA expression and promoter sequence analysis. Comp Biochem Physiol B 162:34–43

    Article  CAS  PubMed  Google Scholar 

  20. Nagashima K, Sato M, Kawamata K, Nakamura A, Ohta T (2005) Genetic structure of Japanese scallop population in Hokkaido, analyzed by mitochondrial haplotype distribution. Mar Biotechnol (NY) 7:1–10

    Article  CAS  Google Scholar 

  21. Belcheva NN, Zakhartsev M, Silina AV, Slinko EN, Chelomin VP (2006) Relationship between shell weight and cadmium content in whole digestive gland of the Japanese scallop Patinopecten yessoensis (Jay). Mar Environ Res 61:396–409

    Article  CAS  PubMed  Google Scholar 

  22. Santoso J, Ishizuka Y, Yoshie-Stark Y (2012) Characteristics of minerals extracted from the mid-gut gland of Japanese scallop Patinopecten yessoensis at various pH values. Fish Sci 78:675–682

    Article  CAS  Google Scholar 

  23. Luo L, Ke C, Guo X, Shi B, Huang M (2014) Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Fish Shellfish Immunol 38:318–329

    Article  CAS  PubMed  Google Scholar 

  24. Ma WL, Yan T, He Y, Wang L (2009) Purification and cDNA cloning of a cadmium-binding metallothionein from the freshwater crab Sinopotamon henanense. Arch Environ Contam Toxicol 56:747–753

    Article  CAS  PubMed  Google Scholar 

  25. Ponzano E, Dondero F, Bouquegneau JM, Sack R, Hunziker P, Viarengo A (2001) Purification and biochemical characterization of a cadmium metallothionein from the digestive gland of the Antarctic scallop Adamussium colbecki (Smith, 1902). Polar Biol 24:147–153

    Article  Google Scholar 

  26. Marcano L, Nusetti O, Rodriguez-Grau J, Vilas J (1996) Uptake and depuration of copper and zinc in relation to metal binding protein in the polychaete Eurythoe complanatu. Comp Biochem Physiol 114C:179–184

    CAS  Google Scholar 

  27. Bustamante P, Miramand P (2005) Evaluation of the variegated scallop Chlamys varia as a biomonitor of temporal trends of Cd, Cu, and Zn in the field. Environ Pollut 138:109–120

    Article  CAS  PubMed  Google Scholar 

  28. Bustamante P, Miramand P (2005) Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay. Sci Total Environ 337:59–73

    Article  CAS  PubMed  Google Scholar 

  29. Metian M, Warnau M, Hédouin L, Bustamante P (2009) Bioaccumulation of essential metals (Co, Mn and Zn) in the king scallop Pecten maximus: seawater, food and sediment exposures. Mar Biol 156:2063–2075

    Article  CAS  Google Scholar 

  30. Evtushenko ZS, Lukyanova ON, Belcheva NN (1990) Cadmium bioaccumulation in organs of the scallop Mizuhopecten yessoensis. Mar Biol 104:247–250

    Article  CAS  Google Scholar 

  31. Nakayama K, Jin K, Tsuzuki T (1995) Studies on cadmium accumulated in hepatopancreas of scallop, Mizuhopecten yessoensis. Rep Hokkaido Inst Pub Health 45:13–20

    CAS  Google Scholar 

  32. Canales J, Fernandez A, Ribeiro J, Cabezas A, Rodrigues J, Cameselle J, Costas M (2008) Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase: a novel metallophosphoesterase family preferentially expressed in rodent immune cells. Biochem J 413:103–113

    Article  CAS  PubMed  Google Scholar 

  33. Paulsen IT, Saier MHJ (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Sasakawa Scientific Research Grant from The Japan Science Society (26–325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichiro Ishizaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Ishizaki, S. & Nagashima, Y. Purification and characterization of metal-binding proteins from the digestive gland of the Japanese scallop Mizuhopecten yessoensis . Fish Sci 82, 337–345 (2016). https://doi.org/10.1007/s12562-015-0950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0950-z

Keywords

Navigation