Skip to main content

Advertisement

Log in

Purification and cDNA Cloning of a Cadmium-Binding Metallothionein from the Freshwater Crab Sinopotamon henanense

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Metallothioneins (MTs) are cysteine-rich, metal-binding proteins that are useful biomarkers for monitoring pollution by heavy metals. In this report, a novel cadmium (Cd)-binding MT (CdMT) from Sinopotamon henanense was purified using acetone precipitation (50–80%), followed by gel-filtration chromatography and anion-exchange chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and time-of-flight mass spectrometry analysis showed that S. henanense CdMT existed as monomer and dimmer forms, with a monomer molecular weight of 6890 Da and a dimmer molecular weight of 13,766 Da. In addition, the full-length cDNA sequence of S. henanense CdMT was prepared from the gill RNA using reverse transcription–polymerase chain reaction and 3′ and 5′ rapid amplification of cDNA ends (RACE) methods. Sequence analyses indicated that the isolated cDNA (633 bp) contains an open reading frame of 177 bp that encodes a protein with 59 amino acids. The deduced amino acid sequence has 18 cysteine residues, implying that S. henanense CdMT binds six equivalents of bivalent metal ions (Cd) as opposed to the seven in its mammalian counterparts. The deduced molecular weight of MT without binding metals is 6218 Da. If six bound Cd atoms are counted, the deduced molecular weight of S. henanense CdMT would be 6892 Da, which is very similar to the molecular weight of the purified protein (6890 Da) determined by time-of-flight mass spectrometry analysis. These confirmed our results of MT purification. These present studies will be helpful to increase the database information of heavy-metal-induced MT in terms of crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alloway BJ (1990) Cadmium. Heavy metals in soils. Wiley, New York, pp 100–124

    Google Scholar 

  • Banni M, Dondero F, Jebali J, Guerbej H, Boussetta H, Viarengo A (2007) Assessment of heavy metal contamination using real-time PCR analysis of mussel metallothionein mt10 and mt20 expression: a validation along the Tunisian coast. Biomarkers 12:369–83. doi:10.1080/13547500701217061

    Article  CAS  Google Scholar 

  • Brouwer M, Enghild J, Hoexum-Brouwer T (1995) Primary structure and tissue-specific expression of blue crab (Callinectes sapidus) metallothionein isoforms. Biochem J 311:617–622

    CAS  Google Scholar 

  • Chowdhury MJ, Baldisserotto B, Wood CM (2005) Tissue-specific cadmium and metallothionein levels in rainbow trout chronically acclimated to waterborne or dietary cadmium. Arch Environ Contam Toxicol 48:381–390. doi:10.1007/s00244-004-0068-2

    Article  CAS  Google Scholar 

  • Dallinger R, Berger B, Gruber C, Hunziker P, Sturzenbaum S (2000) Metallothioneins in terrestrial invertebrates: structural aspects, biological significance and implications for their use as biomarkers. Cell Mol Biol 46:331–346

    CAS  Google Scholar 

  • De Lafontaine Y, Gagne F, Blaise C, Costan G, Gagnon P, Chan HM (2000) Biomakers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St. Lawrence River (Canada). Aquat Toxicol 50:51–71. doi:10.1016/S0166-445X(99)00094-6

    Article  Google Scholar 

  • Dondero F, Piacentini L, Banni M, Rebelo M (2005) Quantitative PCR analysis of two molluscan metallothionein genes unveils differential expression and regulation. Gene 345:259–270. doi:10.1016/j.gene.2004.11.031

    Article  CAS  Google Scholar 

  • Fingerman M, Devi M, Reddy PS, Katyayani R (1996) Impact of heavy metal exposure on the nervous system and endocrine-mediated processes in Crustaceans. Zool Stud 35:1–8

    CAS  Google Scholar 

  • Jiang SH, PSh Wang, Wu YB (2007) Survey of status of contamination of food with cadmium in Shantou City in 2004–2006. China Trop Med 7:1012–1014

    Google Scholar 

  • Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515. doi:10.1021/bi00423a001

    Article  CAS  Google Scholar 

  • Lerch K, Ammer D, Olafson RW (1982) Crab metallothionein. Primary structures of metallothioneins 1 and 2. J Biol Chem 257:2420–2426

    CAS  Google Scholar 

  • Li B, Fu X, Liu QC, Chen YY (2002) Cloning and comparison of four metallothionein cDNAs in crabs from different habitats. Chin J Appl Environ Biol 8:627–631

    CAS  Google Scholar 

  • Li B, Savva D (2000) Cloning of metallotionein cDNAs and its gene in shore crab (Carcinus maenas). Acta Biochem Biophys Sin 32:640–644

    CAS  Google Scholar 

  • Ma WL, Wang L, He YJ, Yan T (2008) Tissue-specific cadmium and metallothionein levels in freshwater crab Sinopotamon henanense during acute exposure to waterborne cadmium. Environ Toxicol 23(3):393–400. doi:10.1002/tox.20339

    Article  CAS  Google Scholar 

  • Mao XW, Li YY, Lin XH (2007) Investigation on pollutant of aquatic products in Guangzhou City. Chin J Health Lab Technol 17:2288–2290

    CAS  Google Scholar 

  • Otvos JD, Olafson RW, Armitage IM (1982) Structure of an invertebrate metallothionein from Scylla serrata. J Biol Chem 257:2427–2431

    CAS  Google Scholar 

  • ChCh Pat, Carmen KM, Felice WY (2004) Common carp metallothionein–1 gene: cDNA cloning, gene structure and expression studies. Biochim Biophys Acta 1676:162–171

    Google Scholar 

  • Pedersen SN, Lundebye AK, Depledge MH (1997) Field application of metallothionein and stress protein biomakers in the shore crab (Carcinus maenas) exposed to trace metals. Aquat Toxicol 37:183–200. doi:10.1016/S0166-445X(96)00816-8

    Article  CAS  Google Scholar 

  • Pedersen KL, Pedersen SN, Hojrup P (1994) Purification and characterization of a cadmium-induced metallothionein from the shore crab Carcinus maenas. Biochem J 297:609–614

    CAS  Google Scholar 

  • Pedersen SN, Pedersen KL, Hojrup PH, Michael HD (1996) Primary structures of decapod crustacean metallothioneins with special emphasis on freshwater and semi-terrestrial species. Biochem J 319:999–1003

    CAS  Google Scholar 

  • Ponzano E, Dondero F, Bouquegneau JM (2001) Purification and biochemical characterization of a cadmium metallothionein from the digestive gland of the Antarctic scallop Adamussium colbecki (Smith, 1902). Polar Biol 24(3):147–153. doi:10.1007/s003000000186

    Article  Google Scholar 

  • Roesijadi G (1992) Metallothionein in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114. doi:10.1016/0166-445X(92)90026-J

    Article  CAS  Google Scholar 

  • Roesijadi G, Robinson WE (1994) Metal regulation in aquatic animals: mechanisms of uptake, accumulation, and release. Aquatic toxicology: molecular. biochemical and cellular perspective. Lewis Publishers, Boca Raton, FL, pp 387–419

    Google Scholar 

  • Savvau D, Li B (2000) Characterisation of two metallothionein cDNAs from the shore crab for use as biomarkers of heavy metal pollution. Ecotoxicology 8:485–493. doi:10.1023/A:1008920206323

    Article  Google Scholar 

  • Syring RA, Brouwer TH, Brouwer M (2000) Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue crab Callinectes sapidus. Comp. Biochem Physiol C 125:325–332

    Article  CAS  Google Scholar 

  • Vasák M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183. doi:10.1016/S1367-5931(00)00082-X

    Article  Google Scholar 

  • ZhT Wang, Wang MQ, Han HW (2004) Survey on the cadmium levels in fish, crustaceans and bivalve mollusks in China of 2002. J Hygiene Res 33:473–474

    Google Scholar 

  • Wu SM, Hwang PP (2003) Copper or cadmium pretreatment increases the protection against cadmium toxicity in tilapia larvae (Oreochromis mossambicus). Zool Stud 42:179–185

    CAS  Google Scholar 

  • YZh Zhang, Wang GJ (2004) Evaluation of heavy metals in aquatic product in the market of major cities in Zhejiang province. Trace Elem Sci 11:58–61

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Sciences Foundation of China (grant Nos. 30470254 and 30640051) and the Natural Sciences Foundation of Shanxi Province (grant No. 20041082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, WL., Yan, T., He, Y. et al. Purification and cDNA Cloning of a Cadmium-Binding Metallothionein from the Freshwater Crab Sinopotamon henanense . Arch Environ Contam Toxicol 56, 747–753 (2009). https://doi.org/10.1007/s00244-008-9224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9224-4

Keywords

Navigation