Skip to main content
Log in

Expression of aquaporins 3, 8 and 10 in the intestines of freshwater- and seawater-acclimated Japanese eels Anguilla japonica

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Euryhaline teleosts possess excellent adaptability to a wide range of environmental salinities. Although intestinal water absorption is important for seawater (SW) adaptation, little is known about the molecular mechanisms of the water-transporting pathway in the intestine. We have cloned three homologs of the mammalian aquaporins (AQPs) 3, 8 and 10 from the intestine of the SW-acclimated Japanese eel. The deduced amino-acid sequences shared 47–98% homology with other known respective AQP isoforms. Topology prediction of the identified sequences showed six membrane-spanning domains, intracellular N- and C-terminal tails, and two NPA (asparagine–proline–alanine) motifs in the second and fifth connecting loops, all of which are highly conserved among known AQPs. Reverse transcription PCR analysis revealed that AQP3 was expressed in various tissues, whereas the expression of AQP 8 and 10 mRNAs was detected predominantly in the intestine. The expression levels of AQPs 1, 3, 8 and 10 in the anterior and posterior intestines and the rectum were determined by real-time quantitative PCR and compared for FW (freshwater)- and SW-acclimated eels. AQP1 expression levels in the posterior intestine and rectum were significantly higher in the SW-acclimated eel than in the FW-acclimated fish. AQP3 expression in the SW-acclimated eel was only higher in the rectum than that in the FW-acclimated eel. Expression levels of AQPs 8 and 10 in the intestinal segments tended to be higher in the SW-acclimated eel than in the FW-acclimated eel. These results showed that intestinal AQP expression is closely related to SW adaptation, suggesting the presence of a water-absorbing mechanism associated with multiple AQP isoforms in the intestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evans DH (1993) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 315–341

    Google Scholar 

  2. Bentley PJ (2002) Endocrines and osmoregulation (Zoophysiology vol 39). Berlin, Springer

  3. Marshall WS, Grosell M (2006) Ion transport, osmoregulation, and acid-base balance. In: Evans DH, Claiborne JB (eds) The physiology of fishes. CRC Press, Boca Raton, pp 179–230

    Google Scholar 

  4. Hirano T, Mayer-Gostan N (1976) Eel esophagus as an osmoregulatory organ. Proc Natl Acad Sci USA 73:1348–1350

    Article  CAS  Google Scholar 

  5. Grosell M (2006) Intestinal anion exchange in marine fish osmoregulation. J Exp Biol 209:2813–2827

    Article  CAS  Google Scholar 

  6. Skadhauge E (1969) The mechanism of salt and water absorption in the intestine of eel (Anguilla anguilla) adapted to waters of various salinities. J Physiol 204:235–240

    Google Scholar 

  7. Aoki M, Kaneko T, Katoh F, Hasegawa S, Tsutsui N, Aida K (2003) Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel. J Exp Biol 206:3495–3505

    Article  Google Scholar 

  8. Kim YK, Ideuchi H, Watanabe S, Park SI, Huh MD, Kaneko T (2008) Rectal water absorption in seawater-adapted Japanese eel Anguilla japonica. Comp Biochem Physiol A Mol Integr Physiol 151:533–541

    Article  Google Scholar 

  9. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  CAS  Google Scholar 

  10. King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 24:224–234

    Google Scholar 

  11. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463–F476

    CAS  Google Scholar 

  12. Hasegawa H, Ma T, Skach W, Matthay M, Verkman AS (1994) Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 269:5497–5500

    CAS  Google Scholar 

  13. Raina S, Preston GM, Guggino W, Agre P (1995) Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem 270:1908–1912

    Article  CAS  Google Scholar 

  14. Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140–16146

    Article  CAS  Google Scholar 

  15. Echevarria M, Windhager EE, Frindt G (1996) Selectivity of the renal collecting duct water channel aquaporin-3. J Biol Chem 271:79–82

    Google Scholar 

  16. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol and urea. J Biol Chem 272:20782–20786

    Article  CAS  Google Scholar 

  17. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274

    Article  CAS  Google Scholar 

  18. Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as aquaglycerolporin. Biochim Biophys Acta 1576:335–340

    CAS  Google Scholar 

  19. Ishibashi K (2006) Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta 1758:989–993

    Article  CAS  Google Scholar 

  20. Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, Fujiyoshi Y (2007) Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 1768:688–693

    Article  CAS  Google Scholar 

  21. Virkki LV, Cooper GJ, Boron WF (2001) Cloning and functional expression of an MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens. Am J Physiol 281:R1994–R2003

    CAS  Google Scholar 

  22. Cutler CP, Cramb G (2002) Branchial expression of an aquaporin 3 (AQP-3) homologue is downregulated in the European eel Anguilla anguilla following seawater acclimation. J Exp Biol 205:2643–2651

    CAS  Google Scholar 

  23. Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, Hasegawa S, Wakabayashi S, Shigekawa M, Chang MH, Romero M, Hirose S (2003) Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol 284:R1199–R1212

    CAS  Google Scholar 

  24. Santos CRA, Estêvão MD, Fuentes J, Cardoso JCR, Fabra M, Passos AL, Detmers FJ, Deen PMT, Cerdà J, Power DM (2004) Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution. J Exp Biol 207:1217–1227

    Article  CAS  Google Scholar 

  25. Watanabe S, Kaneko T, Aida K (2005) Aquaporin-3 expressed in the basolateral membrane of gill chloride cells in Mozambique tilapia Oreochromis mossambicus adapted to freshwater and seawater. J Exp Biol 208:2673–2682

    Article  CAS  Google Scholar 

  26. Martinez AS, Cutler CP, Wilson GD, Phillips C, Hazon N, Cramb G (2005) Cloning and expression of three aquaporin homologues from the European eel (Anguilla anguilla): effects of seawater acclimation and cortisol treatment on renal expression. Biol Cell 97:615–627

    Article  CAS  Google Scholar 

  27. Maclver B, Cutler CP, Yin J, Hill MG, Zeidel ML, Hill WG (2009) Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla). J Exp Biol 212:2856–2863

    Article  CAS  Google Scholar 

  28. Giffard-Mena I, Boulo V, Aujoulat F, Fowden H, Castille R, Charmantier G, Cramb G (2007) Aquaporins molecular characterization in the sea-bass (Dicentrachus labrax): the effect of salinity on AQP1 and AQP3 expression. Comp Biochem Physiol A Mol Integr Physiol 148:430–444

    Article  Google Scholar 

  29. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  30. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  31. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci USA 97:4386–4391

    Article  CAS  Google Scholar 

  32. Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Tanaka T (1999) Water channel protein AQP3 is present in epithelia exposed to the environmental of possible water loss. J Histochem Cytochem 47:1275–1286

    CAS  Google Scholar 

  33. Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, Gabriel SE (2001) Expression and localization of epithelial aquaporins in the adult human lung. Am J Respir Cell Mol Biol 24:224–234

    CAS  Google Scholar 

  34. Hara M, Verkman AS (2003) Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficent mice. Proc Natl Acad Sci USA 100:7360–7365

    Article  CAS  Google Scholar 

  35. Koyama Y, Yamamoto T, Tani T, Nihei K, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K, Kihara I (1999) Expression and localization of aquaporins in rat gastrointestinal tract. Am J Physiol 276:C621–C627

    CAS  Google Scholar 

  36. Calamita G, Mazzone A, Bizzoca A, Cavalier A, Cassano G, Thomas D, Svelto M (2001) Expression and immunolocalization of the aquaporin-8 water channel in rat intestinal tract. Eur J Cell Biol 80:711–719

    Article  CAS  Google Scholar 

  37. Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T (2001) Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287:814–819

    Article  CAS  Google Scholar 

  38. Mobasheri A, Shakibaei M, Marples D (2004) Immunohistochemical localization of aquaporin 10 in the apical membrane of the human ileum: a potential pathway for luminal water and small solute absorption. Histochem Cell Biol 121:463–471

    Article  CAS  Google Scholar 

  39. Martinez AS, Cutler CP, Wilson GD, Phillips C, Hazon N, Cramb G (2005) Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects seawater acclimation and cortisol treatment. Am J Physiol 288:R1733–R1743

    CAS  Google Scholar 

  40. Tipsmark CK, Sørensen KJ, Madsen SS (2009) Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation. J Exp Biol 213:368–379

    Article  Google Scholar 

  41. Matsuzaki T, Suzuki T, Tanaka K (2000) Water channel protein aquaporin 3 epithelial cells. In: Hohmann S, Nielsen S (eds) Molecular biology and physiology of water and solute transport. Kluwer Academic/Plenum, New York, pp 167–171

  42. Lignot JH, Cutler CP, Hazon N, Cramb G (2002) Immunolocalisation of aquaporin 3 in the gill and the gastrointestinal tract of the European eel Anguilla anguilla (L.). J Exp Biol 205:2653–2663

    CAS  Google Scholar 

  43. Cowey CB, Sargent JR (1979) Nutrition. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology: bioenergetics and growth. Academic, New York, pp 30–48

Download references

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-532-F00009), and by the 2007 Post-Doc Program of Pukyong National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Il Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.K., Watanabe, S., Kaneko, T. et al. Expression of aquaporins 3, 8 and 10 in the intestines of freshwater- and seawater-acclimated Japanese eels Anguilla japonica . Fish Sci 76, 695–702 (2010). https://doi.org/10.1007/s12562-010-0259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-010-0259-x

Keywords

Navigation