Skip to main content
Log in

Qualitative Information Processing in Tripartite Synapses: A Hypothetical Model

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

A new model of synaptic information processing is proposed. It focuses on tripartite synapses and the glial network, called syncytium. A tripartite synapse consists not only of the presynapse and postsynapse as neuronal components, but also of the glial components the astrocyte and its syncytium. It is hypothesized that in the astrocytic syncytium, intentional programs may be generated that determine the expression of astrocytic receptors. Intentional programing is formalized as so-called negative language, which can be transformed into a place structure integrated as astrocytic receptors. Based on the formalism of tritogrammatics, astrocytic receptors embody places of the same or different qualities for the occupancy with cognate neurotransmitters. Dependent on the pattern of astrocytic receptors, astrocytes may be capable of qualitatively modifying synaptic information processing. Although the model presented is experimentally supported, there are methodical limits in experimental biological brain research. Hence, the technical implementation may represent a real and promising alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auld DS, Robitaille R. Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron. 2003;40:389–400.

    Article  PubMed  CAS  Google Scholar 

  2. Pereira A, Furlan FA. Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Prog Neurobiol. 2010;92:405–20.

    Article  PubMed  Google Scholar 

  3. Parpura V, Zorec R. Gliotransmission: exocytotic release from astrocytes. Brain Res Rev. 2010;63:83–92.

    Article  PubMed  CAS  Google Scholar 

  4. McCarty KD, Salm AK. Pharmacologically-distinct subsets of astroglia can be identified by their calcium response to neuroligands. Neuroscience. 1991;2(/3):325–33.

    Article  Google Scholar 

  5. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 2005;6:626–40.

    Article  PubMed  CAS  Google Scholar 

  6. Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behaviour. Annu Rev Phys. 2010;72:335–55.

    Article  CAS  Google Scholar 

  7. Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Phys Rev. 2006;86:1009–31.

    Article  CAS  Google Scholar 

  8. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;25:523–30.

    Article  Google Scholar 

  9. Halassa MM, Fellin T, Takano H, Dong J, Haydon PG. Synaptic islands defined by the territory of a single astrocyte. J Neurosci. 2007;27:6473–7.

    Article  PubMed  CAS  Google Scholar 

  10. Verkhratsky A, Butt A. Glial neurobiology. West Sussex: Wiley; 2007.

    Book  Google Scholar 

  11. Dermietzel R, Spray DC. From neuroglue to glia: a prologue. Glia. 1998;24:1–7.

    Article  PubMed  CAS  Google Scholar 

  12. Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22:208–15.

    Article  PubMed  CAS  Google Scholar 

  13. Ransom BR, Ye Z. Gap junctions and hemichannels. In: Kettenmann H, Ransom BR, editors. Neuroglia. Oxford: Oxford University Press; 2005. p. 177–89.

    Google Scholar 

  14. Aquinas TST. In: Martin C, editor. The philosophy of thomas aquinas: introductory readings. New York: Routledge; 1988, p. 38–49.

  15. Brentano F. Psychology from an empirical standpoint. London: Routledge; 1995.

    Google Scholar 

  16. Runes DD. Dictionary of philosophy. Ames: Littlefield, Adams and Co; 1959.

    Google Scholar 

  17. Searle JR. Mind: a brief introduction. Oxford: University Press; 2004.

    Google Scholar 

  18. Dennett D. The intentional stance. Cambridge, MA: Little, Brown; 1978.

    Google Scholar 

  19. Bennett MR, Hacker PMS. Philosophical foundations of neuroscience. Malden: Blackwell Publishing; 2003.

    Google Scholar 

  20. Kelso JAS. Fluctuations in the coordination dynamics of brain and behavior. In: Arhem P, Blomberg P, Liljenstroem H, editors. Disorder versus order in brain function. Singapore: World Scientific Publishing; 2000. p. 185–203.

    Chapter  Google Scholar 

  21. Werner G. Siren call of metapher: subventing the proper task of system neuroscience. J Integr Neurosci. 2004;3:245–52.

    Article  PubMed  Google Scholar 

  22. McCulloch WS. Commentary. In: Thayer L, editor. Communication: theory and research. Springfield: Thomas Publisher; 1966. p. 51–8.

    Google Scholar 

  23. Fogel LJ. On the design of conscious automata. Clearinghouse: Federal Scientific and Technical Information; 1966.

    Google Scholar 

  24. Guenther G. Information, communication and many-valued logic. In: Memorias del XIII congress international de filosofia, vol 5. Mexico: Universidad Nacional Autonoma de Mexico; 1964. p. 143–157.

  25. Guenther G. Martin Heidegger und die Weltgeschichte des Nichts. In: Guenther G, editor. Beiträge zur Grundlegung einer operationsfähigen Dialektik. Hamburg: Meiner Verlag; 1980. p. 260–96.

    Google Scholar 

  26. Lewontin R. The triple helix. In: Gene, organism, and environment. Massachusetts: Harvard University Press; 2000.

  27. Eagleman DM. The where and when of intention. Science. 2004;303:1144–6.

    Article  PubMed  CAS  Google Scholar 

  28. Edelman G. Neural Darwinism: the theory of neuronal group selection. New York: Basic Books; 1987.

    Google Scholar 

  29. Robertson JM. The astrocentric hypothesis: proposed role of astrocytes in consciousness and memory function. J Phys. 2002;96:251–5.

    Google Scholar 

  30. Pasti L, Volterra A, Pozzan T, Carmignoto G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci. 1997;17:7817–30.

    PubMed  CAS  Google Scholar 

  31. Zonta M, Carmignoto G. Calcium oscillations encoding neuron-to-astrocyte communication. J Phys. 2002;96:193–8.

    CAS  Google Scholar 

  32. Perera G, Araque A. Glial calcium signaling and neuron-glia communication. Cell Calcium. 2005;48:375–82.

    Article  Google Scholar 

  33. Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G. Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol. 2005;3(3):e79. doi:10.1371/journal.pbio.0030079.

    Article  PubMed  Google Scholar 

  34. Thomas GG. On permutographs. Supplemente ai rendiconti del Circulo Matematico di Palermo 1982; Serie II: 2.

  35. Mitterauer B. Computer system for simulating reticular formation operation. United States Patent 1988; 4,783,741.

  36. Thomas G, Mitterauer B. Computer for simulating complex processes. United States Patent 1989; 4,829,451.

  37. Giaume C, Venance L. Intercellular calcium signalling and gap junctional communication in astrocytes. Glia. 1998;24:50–64.

    Article  PubMed  CAS  Google Scholar 

  38. Newman EA. Modulation of neuronal activity by glial cells in the retina. In: Volterra A, Magistretti PJ, Haydon PG, editors. The tripartite synapse. Glia in synaptic transmission. Oxford: Oxford University Press; 2002. p. 199–211.

    Google Scholar 

  39. Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian nervous system. Phys Rev. 2001;81:871–927.

    CAS  Google Scholar 

  40. Penes MC, Li X, Nagy JI. Expression of zonula occludens-1 (ZO-1) and the transcription factor CO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci. 2005;22:404–418.

    Google Scholar 

  41. Zoidl G, Dermietzel R. On the search for the electrical synapse: a glimpse at the future. Cell Tiss Res. 2002;310:137–42.

    Article  Google Scholar 

  42. Nagy JI, Dudek FE, Rash JE. Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev. 2004;47:191–215.

    Article  PubMed  CAS  Google Scholar 

  43. Rouach N, Koulakoff A, Giaume C. Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int. 2004;45:265–72.

    Article  PubMed  CAS  Google Scholar 

  44. Mitterauer B. Where and how could intentional programs be generated in the brain? A hypothetical model based on glial-neuronal interactions. BioSystems. 2007;88:101–12.

    Article  PubMed  CAS  Google Scholar 

  45. Hebb DO. The organization of behaviour. New York: Wiley; 1949.

    Google Scholar 

  46. Halassa MM, Fellin T, Haydon PG. Tripartite synapses: roles for astrocytic purins in the control of synaptic physiology and behavior. Neuropharm. 2009;57:343–6.

    Article  CAS  Google Scholar 

  47. Newman EA. Glia and synaptic transmission. In: Kettenmann H, Ransom BR, editors. Neuroglia. Oxford: Oxford University Press; 2005. p. 355–66.

    Google Scholar 

  48. Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006;440:1054–9.

    Article  PubMed  CAS  Google Scholar 

  49. Mitterauer B. An interdisciplinary approach towards a theory of consciousness. BioSystems. 1998;45:99–121.

    Article  PubMed  CAS  Google Scholar 

  50. Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci. 2006;29:547–53.

    Article  PubMed  CAS  Google Scholar 

  51. Kettenmann H, Steinhäuser C. Receptors for neurotransmitters and hormones. In: Kettenmann H, Ransom BR, editors. Neuroglia. Oxford: Oxford University Press; 2005. p. 131–45.

    Google Scholar 

  52. Santello M, Volterra A. Astrocytes as aide-mémoires. Nature. 2010;463:169–70.

    Article  PubMed  CAS  Google Scholar 

  53. Thomas GG. Introduction to Kenogrammatics. Proceedings of the 13th Winter School on Abstract Analysis, section of topology. Rendiconti del Circolo Matematico di Palermo 1985; 11: 113–123.

  54. Hirrlinger J, Hulsmann S, Kirchhoff F. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci. 2004;20:2235–9.

    Article  PubMed  Google Scholar 

  55. Haber M, Zhou L, Murai KK. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci. 2006;26:8887–91.

    Google Scholar 

  56. Guenther G. Cybernetic ontology and transjunctional operations. In: Yovits MC, Jacobi GT, Goldstein GD, editors. Selforganizing systems. Washington DC: Spartan Books; 1962. p. 313–92.

    Google Scholar 

  57. Perea G, Araque A. Glial calcium signalling and neuron-glia communication. Cell Calcium. 2005;38:375–82.

    Article  PubMed  CAS  Google Scholar 

  58. Cooper MS. Intercellular signalling in neuronal-glial networks. BioSystems. 1995;34:65–85.

    Article  PubMed  CAS  Google Scholar 

  59. Newman EA, Zahs KR. Calcium waves in retinal glial cells. Science. 1997;275:844–6.

    Article  PubMed  CAS  Google Scholar 

  60. Mitterauer B, Garvin AM, Dirnhofer R. The sudden infant death syndrome: a neuromolecular hypothesis. Neuroscientist. 2000;6:154–8.

    Article  CAS  Google Scholar 

  61. Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci. 2001;4:803–12.

    Article  PubMed  CAS  Google Scholar 

  62. Mitterauer B. Computation system for the simulation of the cerebral cortex. US-Patent Nr. 1995; 5,410,716.

  63. Mitterauer B. Computer system, particularly for simulation of human perception via sense organs. US-Patent Nr. 2004; 6,697,789B2.

  64. Volman V, Ben-Jacob E, Levine H. The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput. 2007;19:303–26.

    Article  PubMed  Google Scholar 

  65. Nadkarni S, Jung P, Levine H. Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol. 2008. doi:10.1371/journal.pobi1000088.

  66. Goldberg M, DePitta M, Volman V, Berry H, Ben-Jacob E. Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol. 2010;6:e10010909.

    Article  Google Scholar 

  67. DePitta M, Volman V, Levine H, Pioggia G, DeRossi D, Ben-Jacob E. Coexistence of amplitude and frequency modulations in intracellular dynamics. Phys Rev 2008; E77,030903(R).

  68. Mitterauer B. Downregulation and upregulation of glial connexins may cause synaptic imbalances responsible for the pathophysiology of bipolar disorder. CNS Neuroscience and Therapeutics 2010; doi:10.1111/j.1755-5949.2010.00178x.

  69. Mitterauer B. Synaptic imbalances in endogenous psychoses. BioSystems. 2010;100:113–21.

    Article  PubMed  Google Scholar 

  70. Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáňes O, et al. Artificial astrocytes improve neural network performance. PloS. 2011;6(4):e19109.

    CAS  Google Scholar 

  71. McCulloch WS. Mysterium iniquitatis of sinful man aspiring into the place of God. Sci Mon. 1955;80:35–9.

    Google Scholar 

Download references

Acknowledgments

This paper is dedicated to Gotthard Guenther, the founder of the transclassic logic. I am very grateful to Birgitta Kofler-Westergren for preparing the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard J. Mitterauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitterauer, B.J. Qualitative Information Processing in Tripartite Synapses: A Hypothetical Model. Cogn Comput 4, 181–194 (2012). https://doi.org/10.1007/s12559-011-9115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-011-9115-2

Keywords

Navigation