Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 7323 Accesses

Abstract

The synapse is a basic functional structure for information processing between neurons in the central nervous system, required for understanding of the functional properties of neural circuits and brain functions, and even the consciousness that emerges from them. There is now a wealth of experimental results concerning the detailed structure and functional properties of synapses on the basis of molecular biological, since the series of pioneering works by Bert Sakmann and Shosaku Numa in the 1980s that had been originally suggested and postulated by Bernard Katz and colleagues. With the introduction of more advanced research techniques, such as the patch-clamp method (in electrophysiology), two-photon confocal laser microscopy (in imaging), and molecular biological methods, into the research field of synaptic physiology, understanding of the functional significance of synapses has advanced enormously at the molecular level, with fruitful results. Furthermore, emerging new techniques with the invention of noninvasive whole-brain imaging methods (functional magnetic resonance imaging (fMRI), etc.) make it necessary for researchers to have deep understanding of the relationship between the microscopic physiological phenomena and the higher brain functions composed of and elicited from neural networks. Quantitative expressions of electrical and chemical signal transactions carried out within neural networks allow investigators in other fields such as engineering, computer science, and applied physics to treat these biological mechanisms mathematically for computational neuroscience. In this chapter, the physiology, biophysics, and pharmacology of the information processes of synaptic transmission in the central nervous system are presented to provide the necessary background knowledge to researchers in these fields. Especially, electrophysiological results regarding receptors and ion channels, playing important roles in synaptic transmission, are presented from the viewpoint of biophysics. Moreover, one of the most advanced techniques, namely fast multiple-point photolysis by two-photon laser beam activation of receptors in the membrane of a single neuron and neural tissues on the submicron level, is introduced together with results obtained by authorsʼ experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

adenylate cyclase

ACSF:

artificial cerebrospinal fluid

ACh:

muscarinic acetylcholine

AChE:

acetylcholinesterase

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AMPAR:

(amino-methylisoxazole-propionic acid) receptor

AOC:

acoustooptical crystal

AOCD:

acoustooptical crystal deflector

ATP:

adenosine triphosphate

CO:

carbon monoxide

CRIPT:

cysteine-rich interactor of PDZ3

CaMKII:

calcium/calmodulin-dependent protein kinase II

DAG:

diacylglycerol

EPP:

end-plate potential

EPSC:

excitatory postsynaptic current

EPSP:

excitatory postsynaptic potential

ER:

endoplasmic reticulum

FFT:

fast Fourier transformation

GABA:

gamma-aminobutyric acid

GDP:

guanosine diphosphate

GFP:

green fluorescent protein

GKAP:

guanylate kinase-associated protein

GMD:

galvanometer deflector

GRIP:

glutamate receptor-interacting protein

GTP:

guanosine triphosphate

IPSC:

inhibitory postsynaptic current

IPSP:

inhibitory postsynaptic potential

IR:

infrared

KA-R:

kainate receptor

LTD:

long-term depression

LTP:

long-term potentiation

MNI:

4-methoxy-7-nitroindolinyl

NMDA:

N-methyl-d-aspartate

NMDAR:

(N-methyl-d-aspartate acid) NMDA receptor

NMJ:

neuromuscular junction

NO:

nitric oxide

PKA:

protein kinase A

PKC:

protein kinase C

PSD:

postsynaptic density

QA-R:

quisqualate receptor

RIM:

Rab3-interacting module

RMP:

resting membrane potential

SAP-102:

synapse-associated protein-102

SGS:

squid giant synapse

SNAP:

soluble NSF attachment protein

SNARE:

SNAP receptor

STDP:

spike-timing dependent plasticity

SynGAP:

synaptic GTPase-activating protein

UV:

ultraviolet

VAMP:

vesicle associated membrane protein

VOR:

vestibulo-ocular reflex

cAMP:

cyclic adenosine monophosphate

fMRI:

functional magnetic resonance imaging

mEPP:

miniature end-plate potential

t-SNARE:

target soluble NSF attachment receptor

v-SNARE:

vesicle SNARE

References

  1. A.J. Brock (transl.): Galen – On the Neural Faculties, Loeb Classical Library (Harvard Univ. Press, Cambridge 1916)

    Google Scholar 

  2. C. Golgi: Sull sostanza grigia del cerevello, Gazz. Med. Lombarda 6, 224–246 (1873)

    Google Scholar 

  3. S. Ramon y Cajal: The Croonian Lecture: La fine structure des centres nerveux, Proc. R. Soc. B 55, 444–467 (1984)

    Article  Google Scholar 

  4. C.G. Sherrington: The central nervous system. In: A Textbook of Physiology, 7th edn., ed. by M. Foster (Macmillan, London 2010)

    Google Scholar 

  5. J.C. Eccles: An electrical hypothesis of synaptic and neuromuscular transmission, Ann. N.Y. Acad. Sci. 47, 429–455 (1946)

    Article  Google Scholar 

  6. H.H. Dale, W. Feldberg: The chemical transmission of vagus effects to the stomach, J. Physiol. 81, 320–380 (1934)

    Article  Google Scholar 

  7. C. Ribrault, K. Sekimot, A. Triller: From the stochasticity of molecular processes to the variability of synaptic transmission, Nat. Rev. Neurosci. 20, 375–387 (2011)

    Article  Google Scholar 

  8. E.D. De Robertis, H.S. Bennett: A submicroscopic vesicular component of Schwann cells and nerve satellite cells, Exp. Cell Res. 6(2), 543–545 (1954)

    Article  Google Scholar 

  9. G.E. Palade: Electron microscopeobservation of innerneural and neuromuscular synapses, Anat. Record 118, 335–336 (1954)

    Google Scholar 

  10. S.L. Palay: The morphology of synapses in the central nervous system, Exp. Cell Res. Suppl. 5, 275–293 (1958)

    Google Scholar 

  11. T. Sudhof, R.H. Scheller: Mechanism and regulation of neurotransmitter release. In: Synapses, ed. by W.M. Cowan, T.C. Sudhof, C.F. Stevens (The Johns Hopkins Univ. Press, Baltimore 2003) pp. 177–216

    Google Scholar 

  12. B.W. Mel: Information processing in dendritic trees, Neural Comput. 6, 103–1085 (1994)

    Article  Google Scholar 

  13. Y. Humeau, F. Doussau, N.J. Grant, B. Poulain: How botulinum and tetanus neurotoxins block neurotransmitter release, Biochimie 82(5), 427–446 (2000)

    Article  Google Scholar 

  14. R. Robitaille, E.M. Adler, M.P. Charlton: Strategic location of calcium channel sat transmitter release sites of frog neuromuscular synapses, Neuron 5, 773–779 (1990)

    Article  Google Scholar 

  15. P. De Camilli, V. Haucke, K. Takei, E. Mugnaini: The structure of synapses. In: Synapses, ed. by W.M. Cowan, T.C. Sudhof, C.F. Stevens (The Johns Hopkins Univ. Press, Baltimore 2003) pp. 89–133

    Google Scholar 

  16. P. Fatt, B. Katz: An analysis of the end-plate potential recorded with an intra-cellular electrode, J. Physiol. (London) 115, 320–370 (1951)

    Article  Google Scholar 

  17. P. Fatt, B. Katz: Spontaneous subthreshold activity at motor nerve endings, J. Physiol. (London) 117, 109–128 (1952)

    Google Scholar 

  18. J. Del Castillo, B. Katz: Statistical factors involved in neuromuscular facilitation and depression, J. Physiol. (London) 124, 574–585 (1954)

    Article  Google Scholar 

  19. B. Katz, R. Miledi: The study of synaptic transmission in the absence of nerve impulse, J. Physiol. (London) 192, 407–436 (1967)

    Article  Google Scholar 

  20. B. Katz, R. Miledi: The timing of calcium action during neuromuscular transmission, J. Physiol. (London) 192, 535–544 (1967)

    Article  Google Scholar 

  21. B. Katz, R. Miledi: Membrane noise produced by acetylcholine, Nature (London) 226, 962–963 (1970)

    Article  Google Scholar 

  22. B. Sakmann, C. Methfessel, M. Mishina, T. Takahashi, T. Takai, M. Kurasaki, K. Fukuda, S. Numa: Role of acetylcholine receptor subunits in gating of the channel, Nature 318(6046), 538–543 (1985)

    Article  Google Scholar 

  23. M. Mishina, T. Takai, K. Moto, M. Noda, T. Takahashi, S. Numa, C. Methfessel, B. Sakmann: Molecular distinction between fetal and adult forms of muscle acetylcholine receptor, Nature 321(6068), 406–411 (1986)

    Article  Google Scholar 

  24. J.E. Heuser, T.S. Reese, M.J. Dennis, Y. Jan, L. Yan, L. Evans: Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol. 81, 275–300 (1979)

    Article  Google Scholar 

  25. J.G. Nicholls, A.R. Martin, B.G. Wallace, P.A. Fuchs: From Neuron to Brain, 4th edn. (Sinauer, Sunderland 2001)

    Google Scholar 

  26. T. Claudio, M. Ballivet, J. Patrick, S. Heinemann: Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ-subunit, Proc. Natl. Acad. Sci. USA 80, 1111–1115 (1983)

    Article  Google Scholar 

  27. M.H. Akabas, C. Kaufmann, P. Archdeacon, A. Karlin: Identification of acetylcholine receptor-channel-lining residues in the entire M2 segment of the α-subunit, Neuron 13, 919–927 (1994)

    Article  Google Scholar 

  28. D.A. Karlin, M.H. Akabas: Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins, Neuron 15, 1231–1244 (1995)

    Article  Google Scholar 

  29. C. Toyoshima, N. Unwin: Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membrane segment that determines the ion flow through the acetylcholine receptor-channel, Nature 336, 247–250 (1988)

    Article  Google Scholar 

  30. N. Unwin: Neurotransmitter action: Opening of ligandgated ion channels, Cell 72(Suppl.), 31–41 (1993)

    Article  Google Scholar 

  31. N. Unwin: Acetylcholine receptor-channel imaged in the open state, Nature 373, 37–43 (1995)

    Article  Google Scholar 

  32. T.V. Bliss, T. Lomo: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. 232(2), 331–356 (1973)

    Article  Google Scholar 

  33. G.L. Collingridge, S.J. Kehl, H. McLennan: Excitatory amino acid in synaptic transmission in th Schaffer collateral-commissural pathway of the rat hippocampus, J. Physiol. 334, 33–46 (1983)

    Article  Google Scholar 

  34. J.T. Isaac, R.A. Nicoll, R.C. Malenka: Evidence for silent synapses: Implications for the expression of LTP, Neuron 15(2), 427–434 (1995)

    Article  Google Scholar 

  35. M. Farrant, R.A. Webster: GABA antagonists: Their use and mechanisms of action. In: Neuromethods, Vol. 12, ed. by A.A. Boulton, G.B. Baker, A.V. Juorio (Humana, Clifton 1989) pp. 161–219

    Google Scholar 

  36. O.P. Hamill, J. Bormann, B. Sakmann: Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA, Nature 305, 805–808 (1983)

    Article  Google Scholar 

  37. B. Katz: The Release of Neural Transmitter Substances (Liverpool Univ. Press, Liverpool 1969)

    Google Scholar 

  38. J. Del Castillo, B. Katz: Quantal components of the end-plate potential, J. Physiol. (London) 124, 560–573 (1954)

    Article  Google Scholar 

  39. I.A. Boyd, A.R. Martin: The end-plate potential in mammalian muscle, J. Physiol. (London) 132, 74–91 (1956)

    Article  Google Scholar 

  40. H. Korn, D.S. Faber: Quantal analysis and synaptic efficacy in the CNS, Trends Neurosci. 14, 439–445 (1991)

    Article  Google Scholar 

  41. D.S. Faber, H. Korn: Unitary conductance change at teleost Mauthner cell glycinergic synapses: A voltage-clamp and phalmacologic analysis, J. Neurophysiol. 60, 1982–1999 (1988)

    Google Scholar 

  42. U.J. McMahan, S.W. Kuffler: Visual identification of synaptic boutons on living ganglion cells and varicosities in postganglionic axons in the heart of the frog, Proc. R. Soc. B 177, 485–508 (1971)

    Article  Google Scholar 

  43. T.A. Benke, A. Lüthi, M.J. Palmer, M.A. Wikström, W.W. Anderson, J.T. Isaac, G.L. Collingridge: Mathematical modeling of non-stationary fluctuation analysis for studying channel properties of synaptic AMPA receptors, J. Physiol. 537, 407–420 (2001)

    Article  Google Scholar 

  44. F.A. Edwards: LTP is a long term problem, Nature (London) 350, 271–272 (1999)

    Article  Google Scholar 

  45. P. Jonas, G. Major, B. Sakmann: Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus, J. Physiol. 472, 615–663 (1993)

    Article  Google Scholar 

  46. J.J. Jack, S.J. Redman, K. Wong: The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents, J. Physiol. (London) 321, 65–96 (1981)

    Article  Google Scholar 

  47. S. Redman: Quantal analysis of synaptic potentials in neurons of the central nervous system, Physiol. Rev. 70, 165–198 (1990)

    Google Scholar 

  48. D. Johnston, S.M.-S. Wu: Foundation of Cellular Neurophysiology (MIT Press, Cambridge 1995)

    Google Scholar 

  49. R.A. Silver, M. Farrant, S.G. Cull-Candy: Filtering of synaptic currents estimated from the time course of NMDA channel opening at rat cerebellar mossy fiber-granule cell synapse, J. Physiol. 494, 85 (1996)

    Article  Google Scholar 

  50. D.S. Faber, W.S. Young, P. Legendre, H. Korn: Intrinsic quantal variability due to stochastic properties of receptor-transmitter interactions, Science 258, 1494–1498 (1992)

    Article  Google Scholar 

  51. F.A. Edwards, A. Konnerth, B. Sakmann: Quantal analysis of inhibitory synaptic transmission in the dendate gyrus of rat hippocampal slices, J. Physiol. (London) 430, 213–249 (1990)

    Article  Google Scholar 

  52. S. Mochida, A.P. Few, T. Scheuer, W.A. Catterall: Regulation of presynaptic Cav2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity, Neuron 57, 175–182 (2008)

    Article  Google Scholar 

  53. S. Mochida: Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term lasticity, Neurosci. Res. 70, 16–23 (2011)

    Article  Google Scholar 

  54. M. Ito: Physiology of Neuron (Iwanami Press, Tokyo 1972), in Japanese

    Google Scholar 

  55. B.K. Andrasfalvy, J.C. Magee: Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones, J. Physiol. 559, 543–554 (2004)

    Article  Google Scholar 

  56. B.K. Andrasfalvy, I. Mdody: Differences between the scaling of miniature IPSCs and EPSCs recorded in the dentrites of CA1 mouse pyramidal neurons, J. Physiol. 576, 191–196 (2006)

    Article  Google Scholar 

  57. A.A. Biro, N.B. Holderith, Z. Nusser: Quantal size is independent of the release probability at hippocampal excitatory synapses, J. Neurosci. 25, 223–232 (2005)

    Article  Google Scholar 

  58. B. Barbour, B.U. Keller, A. Marty: Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells, Neuron 12, 1331–1343 (1994)

    Article  Google Scholar 

  59. L. Cathala, S. Brickley, S. Cull-Candy, M. Farrant: Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse, J. Neurosci. 23, 6074–6085 (2003)

    Google Scholar 

  60. D. Marr: A theory of cerebellar cortex, J. Physiol. (London) 202, 437–470 (1969)

    Article  Google Scholar 

  61. J.S. Albus: A theory of cerebellar function, Math. Biosci. 10, 25–61 (1971)

    Article  Google Scholar 

  62. M. Ito: Cerebellar control of the vestibulo-ocular reflex around the flocculus hypothesis, Annu. Rev. Neurosci. 5, 276–296 (1982)

    Article  Google Scholar 

  63. E. De Schutter, J.M. Bower: Simulated responses of cerebellar Purkinje cell are independent of the dendritic location of granule cell synaptic inputs, Proc. Natl. Acad. Sci. USA 91, 4736–4740 (1994)

    Article  Google Scholar 

  64. O.P. Hamill, A. Marty, E. Neher, B. Sakmann, F.J. Sigworth: Improved patch-clamp techniques for hight-resolution current recording from cells and cell-free membrane patches, Pflügers Arch. 391, 85–100 (1981)

    Article  Google Scholar 

  65. F.A. Edwards, A. Konnerth, B. Sakmann, T. Takahashi: A thin slice preparation for patch clamp recordings from neurons of the mammalian central nervous system, Pflügers Arch. 414, 600–612 (1989)

    Article  Google Scholar 

  66. B. Sakmann, E. Neher: Single Channel Recording, 2nd edn. (Plenum, New York 1995)

    Book  Google Scholar 

  67. W. Waltz: Patch Clamp Analysis, 2nd edn. (Humana, New York 2007)

    Book  Google Scholar 

  68. P. Molnar, J.J. Hickman: Patch-Clamp Method and Protocols (Humana, New York 2007)

    Book  Google Scholar 

  69. A. Takeuchi, N. Takeuchi: Active phase of frog end-plate potential, J. Neurophysiol. 22, 395–411 (1959)

    Google Scholar 

  70. A. Takeuchi, N. Takeuchi: On the permeability of end-plate membrane during the action of transmitter, J. Physiol. 154, 52–67 (1960)

    Article  Google Scholar 

  71. B. Hille: Ionic Channels of Excitable Membranes, 2nd edn. (Sinauer, Sunderland 1992) pp. 140–169

    Google Scholar 

  72. M. Noda, H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, Y. Furutani, T. Hirose, H. Takashima, S. Inayama, T. Miyata, S. Numa: Structural homology of Torpedo californica acetylcholine receptor subunits, Nature 302, 528–532 (1983)

    Article  Google Scholar 

  73. M. Noda, Y. Furutani, H. Takahashi, M. Toyosato, T. Tanabe, S. Shimizu, S. Kikyotani, T. Kayano, T. Hirose, S. Inayama, S. Numa: Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α-subunit precursor of muscle acetylcholine receptor, Nature 305, 818–823 (1983)

    Article  Google Scholar 

  74. K. Imoto, C. Busch, B. Sakmann, M. Mishina, T. Konno, J. Nakai, H. Bujo, Y. Mori, K. Fukuda, S. Numa: Rings of negatively charged amino acids determine the acetylcholine receptor-channel conductance, Nature 335, 645–648 (1988)

    Article  Google Scholar 

  75. E.R. Kandel, J.H. Schwartz, T.M. Jessell: Principles of Neural Science, 4th edn. (McGraw-Hill, Hoboken 2000)

    Google Scholar 

  76. A.L. Hodgkin, A.F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  77. E. Neher, B. Sakmann: Single-channel currents recorded from membrane of denervated frog muscle fibers, Nature (London) 260, 770–802 (1976)

    Article  Google Scholar 

  78. D. Colquhoun, B. Sakmann: Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels, Nature (London) 294, 464–466 (1981)

    Article  Google Scholar 

  79. D. Colquhoun, B. Sakmann: Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate, J. Physiol. (London) 369, 501–557 (1985)

    Article  Google Scholar 

  80. D. Calquhoun, A.G. Hawkes: The principles of the stochastic interpretation of ion-channel mechanisms. In: Single Channel Recording, 2nd edn., ed. by B. Sakmann, E. Neher (Plenum, New York 1995) pp. 397–479

    Chapter  Google Scholar 

  81. N. Spruston, P. Jonas, B. Sakmann: Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons, J. Physiol. 482, 325–352 (1995)

    Article  Google Scholar 

  82. R.A. Lester, J.D. Clements, G.L. Westbrook, C.E. Jahr: Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents, Nature 346, 565–567 (1990)

    Article  Google Scholar 

  83. M. Hausser, A. Roth: Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells, J. Physiol. 501, 77–95 (1997)

    Article  Google Scholar 

  84. J.D. Clements: Transmitter timecourse in the synaptic cleft: Its role in central synaptic function, Trends Neurosci. 19, 163–171 (1996)

    Article  Google Scholar 

  85. H. Kojima, S. Katsumata: An analysis of synaptic transmission and its plasticity by glutamate receptor channel kinetics models and 2-photon laser photolysis, Lecture Notes in Computer Science 5506, 88–94 (2009)

    Article  Google Scholar 

  86. D. Colquhoun, P. Jonas, B. Sakmann: Action of brief pulses of glutamate on AMPA/kainite receptors in patches from different neurons of rat hippocampal slices, J. Physiol. (London) 458, 261–287 (1992)

    Article  Google Scholar 

  87. M. Hausser, A. Roth: Estimating the time course of excitatory postsynaptic conductance in neocortical pyramidal cells using a novel voltage jump method, J. Neurosci. 17, 7606–7625 (1997)

    Google Scholar 

  88. P. Jonas, B. Sakmann: Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices, J. Physiol. 255, 143–171 (1992)

    Article  Google Scholar 

  89. J.D. Clements, R.A. Lester, G. Jahr, C.E. Tong, G.L. Westbrook: The time course of glutamate in the synaptic cleft, Science 258, 1498–1501 (1992)

    Article  Google Scholar 

  90. W. Rall, I. Segev: Space-clamp problems when voltage clamping branched neurons with intracellular microelectrodes. In: Voltage and Patch Clamping with Intracellular Microelectrodes, ed. by T.G. Smith Jr, H. Lecar, S.J. Redman, P. Gage (Am. Physiol. Soc., Bethesda 1985) pp. 191–215

    Chapter  Google Scholar 

  91. M. London, M. Häusser: Dendritic computation, Annu. Rev. Neurosci. 28, 503–532 (2005)

    Article  Google Scholar 

  92. M. London, I. Segev: Synaptic scaling in vitro and in vivo, Nat. Neurosci. 4, 853–855 (2001)

    Article  Google Scholar 

  93. R. Dingledine, K. Borges, D. Bowie, S.F. Traynelis: The glutamate receptor ion channels, Pharmacol. Rev. 51, 7–61 (1999)

    Google Scholar 

  94. S. Cull-Candy, L. Kelly, M. Farrant: Regulation of Ca2+-permeable AMPA receptors: Synaptic plasticity and beyond, Curr. Opin. Neurobiol. 16, 288–297 (2006)

    Article  Google Scholar 

  95. M. Hollmann, S. Heinemann: Cloned glutamate receptors, Annu. Rev. Neurosci. 17, 31–108 (1994)

    Article  Google Scholar 

  96. B. Clark, M. Farrant, S.G. Cull-Candy: A direct comparison of the single-channel properties of synaptic and extrasynaptic NMDA receptors, J. Neurosci. 17, 107–116 (1997)

    Google Scholar 

  97. T.A. Benke, A. Lüthi, J.T. Issac, G. Collingridge: Modulation of AMPA receptor unitary conductance by synaptic activity, Nature 393, 793–797 (1998)

    Article  Google Scholar 

  98. A. Harsch, H.P. Robinson: Postsynaptic variability of firing in rat cortical neurons: The roles of input synchronization and synaptic NMDA receptor conductance, J. Neurosci. 20, 6181–6192 (2000)

    Google Scholar 

  99. K. Moriyoshi, M. Masu, T. Ishii, R. Shigemoto: Molecular cloning and characterization of the rat NMDA receptor, Nature 354, 31–37 (1991)

    Article  Google Scholar 

  100. M. Masu, Y. Tanabe, K. Tsuchida, R. Shigemoto, S. Nakanishi: Sequence and expression of a metabotropic glutamate receptor, Nature 349, 760–765 (1991)

    Article  Google Scholar 

  101. N. Armstrong, Y. Sun, G.Q. Chen, E. Gouaux: Structure of a glutamate-receptor ligand-binding core in complex with kainate, Nature 395, 913–917 (1998)

    Article  Google Scholar 

  102. M. Matsuzaki: Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons, Nat. Neurosci. 4, 1086–1092 (2001)

    Article  Google Scholar 

  103. J.J. Lawrence, L.O. Trussell: Long-term specification of AMPA receptor properties after synapse formation, J. Neurosci. 20, 4864–4870 (2000)

    Google Scholar 

  104. A.A. Bagel, J.P. Kao, C.-M. Tng, S.M. Thompson: Long-term potentiation of exogeneous glutamate responses at single dendritic spines, Proc. Natl. Acad. Sci. USA 102(40), 14434–14439 (2005)

    Article  Google Scholar 

  105. D.S. Bredt, R.A. Nicoll: AMPA receptor trafficking at excitatory synapses, Neuron 40, 361–379 (2003)

    Article  Google Scholar 

  106. V. Derkach, A. Barria, T.R. Soderling: Ca2+/calmodulin-kinaseII enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors, Proc. Natl. Acad. Sci. USA 96, 3269–3274 (1999)

    Article  Google Scholar 

  107. C.R. Anderson, C.F. Stevens: Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction, J. Physiol. (London) 235, 655–691 (1973)

    Article  Google Scholar 

  108. F.J. Sigworth: The variance of sodium current fluctuations at the node of Ranvier, J. Physiol. (London) 307, 97–129 (1980)

    Article  Google Scholar 

  109. F.J. Sigworth: The variance of sodium channels under conditions of reduced current at the node of Ranvier, J. Physiol. (London) 307, 131–142 (1980)

    Article  Google Scholar 

  110. H.P. Robinson, Y. Sahara, N. Kawai: Nonstationary fluctuation analysis and direct resolution of single channel currents at postsynaptic sites, Biophys. J. 59, 295–304 (1991)

    Article  Google Scholar 

  111. S.F. Traynelis, R.A. Silver, S.G. Cull-Candy: Estimated conductance of glutamate receptor channels activated during EPSCs at the rat cerebellar mossy fibret-granule cell synapse, Neuron 11, 279–289 (1993)

    Article  Google Scholar 

  112. H. Kojima, K. Ichikawa, L.V. Ileva, S. Traynelis: Properties of AMPA receptor channels during long-term depression in rat cerebellar Purkinje cells. In: Slow Synaptic Responses and Modulation, ed. by K. Kuba, H. Higashida, D. Brown, T. Yoshioka (Springer, Tokyo 2000)

    Google Scholar 

  113. D.J. Wyllie, P. Béhé, D. Colquhoun: Single-channel activations and concentration jumps: Comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors, J. Physiol. 510, 1–18 (1998)

    Article  Google Scholar 

  114. N.R. Carlson: Physiology of Behavior, 10th edn. (Pearson Education, New York 2009)

    Google Scholar 

  115. C.M. Niswender, P.J. Conn: Metabotropic glutamate receptors: Physiology, Pharmacology, and disease, Annu. Rev. Pharmacol. Toxicol. 50, 295–322 (2010)

    Article  Google Scholar 

  116. J. Nabekura, S. Katsurabayashi, Y. Karazu, S. Shibata, A. Matsubara, S. Jinno, Y. Mizoguchi, A. Sasaki, H. Ishibashi: Developmental switch from GABA to glycine release in single central synaptic terminals, Nat. Neurosci. 7, 17–23 (2004)

    Article  Google Scholar 

  117. J.C. Magee, E.P. Cook: Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons, Nat. Neurosci. 3, 895–903 (2000)

    Article  Google Scholar 

  118. J. Magee, D. Hoffmann, C. Colbert, D. Johnston: Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons, Annu. Rev. Physiol. 60, 327–346 (1998)

    Article  Google Scholar 

  119. R. Llinas, M. Sugimori: Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (London) 305, 171–195 (1980)

    Article  Google Scholar 

  120. R. Llinas, M. Sugimori: Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (London) 305, 197–203 (1980)

    Article  Google Scholar 

  121. I. Llano, A. Marty, J.W. Johnson, P. Ascher, B.H. Gähwiler: Patch-clamp recording of amino acid-activated responses in `organotypicʼ slice cultures, Proc. Natl. Acad. Sci. USA 85, 3221–3225 (1988)

    Article  Google Scholar 

  122. S.M. Thompson, J.P. Kao, R.H. Kramer: Flashy science: Controlling neural function with light, J. Neurosci. 9, 10358–10365 (2005)

    Article  Google Scholar 

  123. K. Svoboda, R. Yasuda: Principles of two-photon excitation microscopy and its applications to neuroscience, Neuron 50, 823–839 (2006)

    Article  Google Scholar 

  124. S. Shoham, D.H. OʼConnor, D.V. Sarikov: Rapid neurotransmitter uncaging in spatially defined patterns, Nat. Methods 5(11), 837–842 (2005)

    Article  Google Scholar 

  125. H. Kojima, E. Simburger, C. Boucsein, T. Maruo, M. Tsukada, S. Okabe, A. Aertsen: Development of a system for patterned rapid photolysis and 2-photon confocal microscopy, IEEE Circuit Dev. Mag. 22(6), 66–74 (2006)

    Article  Google Scholar 

  126. M. Matsuzaki, G.C. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, H. Kasai: Dendric spine geometry is crtitical for AMPA receptor expression in hippocampal CA1 pyramidal neurons, Nat. Neurosci. 4, 1086–1092 (2001)

    Article  Google Scholar 

  127. M. Yoneyama, Y. Fukushima, H. Kojima, M. Tsukada: Analysis of the spatial-temporal characteristics of synaptic EPSP summation on the dendritic trees of hippocampal CA1 pyramidal neurons as revealed by laser uncaging stimulation, J. Jap. Neural Netw. Soc. 17(1), 2–11 (2010), (in Japanese)

    Google Scholar 

  128. S. Toujoh, Y. Nakazato, T. Maruo, S. Katsumata, K. Sakai, H. Kojima: A system for rapid patterned photolysis by ultraviolet (UV) laser beam, Proc. Faculty Eng. (Tamagawa Univ.), Vol. 43 (2008) pp. 13–22

    Google Scholar 

  129. F.A. Edwards: Anatomy and electrophysiology of fast central synapses lead to a structural model fot long-term potentiation, Physiol. Rev. 75, 759–787 (1995)

    Google Scholar 

  130. B. Katz, R. Miledi: The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. (London) 224, 665–699 (1972)

    Article  Google Scholar 

  131. A. Losonczy, J.C. Magee: Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons, Neuron 50, 291–307 (2006)

    Article  Google Scholar 

  132. C. Boucsein, M. Nawart, S. Rotter, A. Aertsen, D. Heck: Controlling Synaptic input pattern in vitro by dynamic photo stimulation, J. Neurophysiol. 94, 2948–2958 (2005)

    Article  Google Scholar 

  133. Y. Yoshimura, E.M. Callaway: Fine-scale specificity od cortical networks depends on inhibitory cell type and connectivity, Nat. Neurosci. 8(11), 1552–1559 (2005)

    Article  Google Scholar 

  134. S. Okabe: Nano-sacle fluorescent imaging analysis during synaptic dynamical changes, Biotechnol. J. 11–12, 744–752 (2005), (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kojima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Kojima, H. (2014). Information Processing in Synapses. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics