Skip to main content
Log in

Evaluation of genotoxicity, cytotoxicity and cytostasis in human lymphocytes exposed to patulin by using the cytokinesis-block micronucleus cytome (CBMN cyt) assay

  • Original Paper
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Patulin (PAT) is a fungal secondary metabolite commonly present in apples and apple products. In the present study, PAT was evaluated for its genotoxic, cytotoxic and cytostatic effects to human peripheral blood lymphocytes by using the cytokinesis-block micronucleus cytome (CBMN Cyt) assay. Lymphocyte cultures were treated with PAT at the following concentrations, 0.1, 0.3, 0.5, 1.0, 2.5, 5.0, and 7.5 μM, as well as 0.5 μM mitomycin c (MMC) as a positive control and dimethyl sulfoxide (DMSO) as a vehicle control. PAT was found to induce nucleoplasmic bridges (NPBs) at 5.0 and 7.5 μM concentrations (P < 0.05), apoptotic cells at 0.1, 1.0, 5.0 μM (P < 0.05), 7.5 μM concentrations (P < 0.01) and necrotic cells at 0.3 and 2.5 μM (P < 0.05), 5.0 and 7.5 μM (P < 0.01) concentrations in human lymphocytes. The 2.5, 5.0, and 7.5 μM PAT concentrations also led to a clear decrease in the nuclear division index (NDI) (P < 0.05). PAT caused a significant dose-dependent increase in the number cells of NPBs, in the frequency of apoptotic and necrotic cells, and a significant dose-dependent decrease in the NDI values in lymphocytes. These results indicate that PAT at high concentrations is genotoxic, cytotoxic and cytostatic in cultured human lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alves I, Oliveira NG, Laires A, Rodrigues AS, Rueff J (2000) Induction of micronuclei and chromosomal aberrations by the mycotoxin patulin in mammalian cells: role of ascorbic asid as a modulator of patulin clastogenicity. Mutagenesis 15:229–234. doi:10.1093/mutage/15.3.229

    Article  PubMed  CAS  Google Scholar 

  • Ayed-Boussema I, Abassi H, Bouaziz C, Hlima WB, Ayed Y, Bacha H (2011) Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells. Environ Toxicol. doi:10.1002/tox.20720, Jun 7

  • Becci PJ, Hess FG, Johnson WD, Gallo MA, Babish JG, Dailey RE, Parent RA (1981) Long-term carcinogenicity and toxicity studies of patulin in the rat. J Appl Toxicol 1(5):256–261

    Article  PubMed  CAS  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. doi:10.1128/CMR.16.3.497-516.2003

    Article  PubMed  CAS  Google Scholar 

  • Brase S, Encinas A, Keck J, Nising CF (2009) Chemistry and Biology of Mycotoxins and Related Fungal Metabolites. Chem Rev 109:3903–3990. doi:10.1021/cr050001f

    Article  PubMed  CAS  Google Scholar 

  • CAST (2003) Mycotoxins: Risks in Plant, Animal, and Human Systems. Council of Agricultural Science and Technology, Task Force Rep. No. 139. CAST, Ames, Iowa, USA.

  • Ciegler A, Becwith AC, Jackson LK (1976) Teratogenicity of patulin and patulin adducts formed with cysteine. Appl Environ Microbiol 31:664–667

    PubMed  CAS  Google Scholar 

  • Cooray R, Kiessling KH, Lindahl-Kiessling K (1982) The effects of patulin and patulin-cysteine mixtures on DNA synthesis and the frequency of sister-chromatid exchanges in human lymphocytes. Food Chem Toxicol 20:893–898. doi:10.1016/S0015-6264(82)80224-1

    Article  PubMed  CAS  Google Scholar 

  • Donmez-Altuntas H, Hamurcu Z, Imamoglu N, Liman BC (2003) Effects of ochratoxin A on micronucleus frequency in human lymphocytes. Nahrung-Food 47:33–35. doi:10.1002/food.200390005

    Article  CAS  Google Scholar 

  • Donmez-Altuntas H, Dumlupinar G, Imamoglu N, Hamurcu Z, Liman BC (2007) Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. J Appl Toxicol 27:337–341. doi:10.1002/jat.1209

    Article  PubMed  CAS  Google Scholar 

  • Eastmond DA, Tucker JD (1989) Identification of aneuploidy–inducing agents using cytokinesis–blocked human lymphocytes and an antikinetochore antibody. Environ Mol Mutagen 13:34–43. doi:10.1002/em.2850130104

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (1993) The cytokinesis-block micronucleus technique: A detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res 285:35–44. doi:10.1016/0027-5107(93)90049-L

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95. doi:10.1016/S0027-5107(00)00065-8

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res 600:58–66. doi:10.1016/j.mrfmmm.2006.05.028

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104. doi:10.1038/nprot.2007.77

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Crott J, Turner J, Brown S (1999) Necrosis, apoptosis, cytostasis and DNA damage in human lymphocytes measured simultaneously within the cytokinesis-block micronucleus assay: description of the method and results for hydrogen peroxide. Mutagenesis 14:605–612. doi:10.1093/mutage/14.6.605

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUman MicroNucleus project. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75. doi:10.1016/S1383-5718(02)00249-8

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Holland N, Zeiger E, Chang WP, Burgaz S, Thomas P, Bolognesi C, Knasmueller S, Kirsch-Volders M, Bonassi S (2011) The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells-past, present and future. Mutagenesis 26:239–245. doi:10.1093/mutage/geq051

    Article  PubMed  CAS  Google Scholar 

  • Glaser N, Stopper H (2012) Patulin: Mechanism of genotoxicity. Food Chem Toxicol 50(5):1796–801. doi.org/10.1016/j.fct.2012.02.096

  • Hamurcu Z, Cakir I, Donmez-Altuntas H, Bitgen N, Karaca Z, Elbuken G, Bayram F (2011) Micronucleus evaluation in mitogen-stimulated lymphocytes of patients with acromegaly. Metabolism 60:1620–1626. doi:10.1016/j.metabol.2011.03.013

    Article  PubMed  CAS  Google Scholar 

  • Harris KL, Bobe G, Bourquin LD (2009) Patulin surveillance in apple cider and juice marketed in Michigan. J Food Prot 72:1255–1261

    PubMed  CAS  Google Scholar 

  • International Agency for Research on Cancer (1986) Some naturally occurring and synthetic food components, furocoumarins and ultraviolet radiation. IARC Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans 40:83–98

    Google Scholar 

  • Ito R, Yamazaki H, Inoue K, Yoshimura Y, Kawaguchi M, Nakazawa H (2004) Development of liquid chromatographyelectrospray mass spectrometry for the determination of patulin in apple juice: investigation of its contamination levels on Japan. J Agric Food Chem 52:7467–7468. doi:10.1021/jf049264l

    Article  Google Scholar 

  • Iwahashi Y, Hosoda H, Park JH, Lee JH, Suzuki Y, Kitagawa E, Murata SM, Jwa NS, Gu MB, Iwahashi H (2006) Mechanisms of patulin toxicity under conditions that inhibit yeast growth. J Agric Food Chem 54:1936–1942. doi:10.1021/jf052264g

    Article  PubMed  CAS  Google Scholar 

  • JECFA, 1996, Forty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives. Toxicological Evaluation of Certain Food Additives and Contaminants in Food: Patulin. WHO Food Additives Series, 35 (Geneva: WHO), pp. 377–402.

  • Lee KS, Roschenthaler RJ (1986) DNA-damaging activity of patulin in Escherichia coli. Appl Environ Microbiol 52:1046–1054

    PubMed  CAS  Google Scholar 

  • Liu BH, Yu FY, Wu TS, Li SY, Su MC, Wang MC, Shih SM (2003) Evaluation of genotoxic risk and oxidative DNA damage in mammalian cells exposed to mycotoxins, patulin and citrinin. Toxicol Appl Pharmacol 191:255–263. doi:10.1016/S0041-008X(03)00254-0

    Article  PubMed  CAS  Google Scholar 

  • Liu BH, Wu TS, Yu FY, Su CC (2007) Induction of oxidative stress response by the mycotoxin patulin in mammalian cells. Toxicol Sci 95:340–347. doi:10.1093/toxsci/kfl156

    Article  PubMed  CAS  Google Scholar 

  • Moss MO (2008) Fungi, quality and safety issues in fresh fruits and vegetables. J Appl Microbiol 104:1239–1243. doi:10.1111/j.1365-2672.2007.03705.x

    Article  PubMed  CAS  Google Scholar 

  • Osswald H, Frank HK, Komitowski D, Winter H (1978) Long term testing of patulin administer orally to Sprague–Dawley rats and Swiss mice. Food Cosmet Toxicol 16:243–247

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer E, Gross K, Metzler M (1998) Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin. Carcinogenesis 19:1313–1318. doi:10.1093/carcin/19.7.1313

    Article  PubMed  CAS  Google Scholar 

  • Schumacher DM, Müller C, Metzler M, Lehmann L (2006) DNA-DNA cross-links contribute to the mutagenic potential of the mycotoxin patulin. Toxicol Lett 166:268–275. doi:10.1016/j.toxlet.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  • Speijers GJ, Franken MA, van Leeuwen FX (1988) Subacute toxicity study of patulin in the rat: Effects on the kidney and the gastro-intestinal tract. Food Chem Toxicol 26:23–30. doi:10.1016/0278-6915(88)90037-3

    Article  PubMed  CAS  Google Scholar 

  • Stetina R, Votava M (1986) Induction of DNA single-strand breaks and DNA synthesis inhibition by patulin, ochratoxin A, citrinin, and aflatoxin B1 in cell lines CHO and AWRF Folia Biol. Praha 32:128–144

    CAS  Google Scholar 

  • Szymczyk K, Szteke B, Goszcz H (2004) Patulin content in Polish apple juices. Rocz Panstw Zakl Hig 55:255–260

    PubMed  CAS  Google Scholar 

  • Thust R, Kneist S, Mendel J (1982) Patulin, a further clastogenic mycotoxin, is negative in the SCE assay in Chinese hamster V79-E cells in vitro. Mutat Res 103:91–97

    Article  PubMed  CAS  Google Scholar 

  • Wichmann G, Herbarth O, Lehmann I (2002) The mycotoxins citrinin, gliotoxin, and patulin affect interferon-gamma rather than interleukin-4 production in human blood cells. Environ Toxicol 17:211–218. doi:10.1002/tox.10050

    Article  PubMed  CAS  Google Scholar 

  • Wu TS, Liao YC, Yu FY, Chang CH, Liu BH (2008) Mechanism of patulin-induced apoptosis in human leukemia cells (HL-60). Toxicol Lett 183:105–111. doi:10.1016/j.toxlet.2008.09.018

    Article  PubMed  CAS  Google Scholar 

  • Wurgler FE, Friederich U, Schlatter J (1991) Lack of mutagenicity of ochratoxin A and B, citrinin, patulin and cnestine in Salmonella typhimurium TA102. Mutat Res 261:209–211. doi:10.1016/0165-1218(91)90069-X

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Zhong L, Jiang L, Geng C, Cao J, Sun X, Liu X, Chen M, Ma Y (2011) 6-gingerol prevents patulin-induced genotoxicity in HepG2 cells. Phytother Res 25:1480–5. doi:10.1002/ptr.3446

    Article  PubMed  CAS  Google Scholar 

  • Yurdun T, Omurtag GZ, Ersoy O (2001) Incidence of patulin in apple juices marketed in Turkey. J Food Prot 64:1851–1853

    PubMed  CAS  Google Scholar 

  • Zhou SM, Jiang LP, Geng CY, Cao J, Zhong LF (2009) Patulin-induced genotoxicity and modulation of glutathione in HepG2 cells. Toxicon 53:584–586. doi:10.1016/j.toxicon.2009.01.030

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Erciyes University Scientific Research Projects Units (Project number: TSD-08-550).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamiyet Donmez-Altuntas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donmez-Altuntas, H., Gokalp-Yildiz, P., Bitgen, N. et al. Evaluation of genotoxicity, cytotoxicity and cytostasis in human lymphocytes exposed to patulin by using the cytokinesis-block micronucleus cytome (CBMN cyt) assay. Mycotoxin Res 29, 63–70 (2013). https://doi.org/10.1007/s12550-012-0153-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-012-0153-8

Keywords

Navigation