Skip to main content
Log in

First Middle–Late Jurassic gladius vestiges provide new evidence on the detailed origin of incirrate and cirrate octopuses (Coleoidea)

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Limpet-like and non-mineralized fossils from the upper Kimmeridgian Nusplingen Plattenkalk are identified as internal shells of coleoid cephalopods, more specifically as octobrachian gladii. The significantly reduced median field provokes us to consider this new gladius type to be shorter than the mantle length. It is consequently seen as a vestigial gladius. The first recognition of an unpaired gladius vestige in the fossil record sheds new light on the evolutionary history of the gladius vestiges of incirrate and cirrate Octopoda. Patelloctopus ilgi sp. nov. is most similar to Callovian Pearceiteuthis buyi in having a rudimentary median field with an extraordinary large opening angle and radiating ribs on the lateral fields. Both P. ilgi sp. nov. and P. buyi are therefore combined in the new family Patelloctopodidae. The patella-shaped lateral fields of the gladius vestige exposes Patelloctopus and Pearceiteuthis as members of the superfamily Muensterelloidea, which includes, apart from Patelloctopodidae, the Muensterellidae and Enchoteuthidae. The unpaired patelloctopodid gladius vestige is morphologically intermediate between the muensterelloid gladius type and the paired (bipartite) gladius vestige of Late Cretaceous Palaeoctopodidae (Palaeoctopus, Keuppia). The gladius vestige morphology suggests that the mode of locomotion and the life style of these shallow water inhabitants were similar to those of extant deep-sea octopods (Cirrata) and that the Patelloctopodidae represents the stem group of the Octopoda (Cirrata and Incirrata), although Patelloctopus ilgi sp. nov. might alternatively be a stem incirrate.

Kurzfassung

Napfschnecken-artige und nicht mineralisierte Fossilien aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium) werden als die Innenschale coleoider Cephalopoden gedeutet, genauer als ein Gladius der Octobrachia. Das signifikant reduzierte Mittelfeld lässt uns annehmen, dass dieser neue Gladius-Typ kürzer gewesen sein muss als die Mantellänge. Er ist deswegen als Gladiusrest anzusehen. Die erste Entdeckung von unpaaren Gladiusresten im Fossilbericht gibt neue Aufschlüsse über die Evolutionsgeschichte der Gladiusreste von incirraten und cirraten Octopoda. Wegen seines rudimentären Mittelfeldes, dessen außergewöhnlich großen Öffnungswinkels und radiärer Rippen auf den Seitenfeldern ähnelt Patelloctopus ilgi sp. nov. am meisten Pearceiteuthis buyi aus dem Callovium. Patelloctopus ilgi sp. nov. and Pearceiteuthis buyi werden deswegen in der neu aufgestellten Familie Patelloctopodidae vereinigt. Die Patella-artig geformten Lateralfelder des Gladiusrestes lassen Patelloctopus und Pearceiteuthis eindeutig als Mitglieder der Superfamilie Muensterelloidea erkennen, in der neben den Patelloctopodidae die Muensterellidae und die Enchoteuthidae zusammengefasst sind. Morphologisch kann der unpaare Gladiusrest der mittel- und spätjurassischen Patelloctopodidae als intermediäres Stadium zwischen einem muensterelloiden Gladius und den paarigen (zweiteiligen) Gladiusresten der spätkretazischen Palaeoctopodidae (Palaeoctopus, Keuppia) angesehen werden. Die Morphologie des unpaaren Gladiusrestes lässt vermuten, dass sich die Art der Fortbewegung und die Lebensweise dieser Flachwasserbewohner denen heutiger Tiefseeoctopoden (Cirrata) ähnelte und dass ferner die Patelloctopodidae die Stammgruppe der Octopoda (Cirrata und Incirrata) darstellt, obwohl alternativ dazu Patelloctopus ilgi sp. nov. schon ein Stammgruppenvertreter der Incirrata gewesen sein könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bandel, K., and H. Leich. 1986. Jurassic Vampyromorpha (dibranchiate cephalopods). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1986 (3): 129–148.

    Google Scholar 

  • Bantel, G., G. Schweigert, M. Nose, and H.-M. Schulz. 1999. Mikrofazies, Mikro- und Nannofossilien aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde (Serie B) 279: 1–55.

    Google Scholar 

  • Bather, F.A. 1888. Professor Blake and shell-growth in Cephalopoda. Annals and Magazin of Natural History 6 (1): 421–427.

    Article  Google Scholar 

  • Berthold, T., and T. Engeser. 1987. Phylogenetic analysis and systematization of the Cephalopoda (Mollusca). Verhandlungen des Naturwissenschaftlichen Vereins Hamburg 29: 187–220.

    Google Scholar 

  • Bizikov, V.A. 2004. The shell in Vampyropoda (Cephalopoda): morphology, functional role and evolution. Ruthenica (Supplement) 3: 1–88.

    Google Scholar 

  • Bizikov, V.A. 2008. Evolution of the shell in Cephalopoda. Moscow: VNIRO Publishing.

    Google Scholar 

  • Bizikov, V.A., and R.B. Toll. 2016. Part M, chapter 9A: the gladius and its vestiges in recent Coleoidea. Treatise Online 77: 1–31.

    Google Scholar 

  • Boettger, C.B. 1952. Die Stämme des Tierreichs in ihrer systematischen Gliederung. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 4: 238–300.

    Google Scholar 

  • Boletzky, S. von. 1992. Evolutionary aspects of development, life style, and reproduction mode in incirrate octopods (Mollusca, Cephalopoda). Revue Suisse de Zoologie 4: 755–770.

    Article  Google Scholar 

  • Boletzky, S. von. 1999. Brève mise au point sur la classification des céphalopodes actuels. Bulletin de Société Zoologique de France 124 (3): 271–278.

    Google Scholar 

  • Dietl, G., and G. Schweigert. 2004. The Nusplingen Lithographic Limestone—a “Fossil Lagerstaette” of late Kimmerigian age from the Swabian Alb (Germany). Rivista Italiana de Paleontolgia e Stratigrafia 110 (1): 303–309.

    Google Scholar 

  • Dietl, G., and G. Schweigert. 2011. Im Reich der Meerengel—Fossilien aus dem Nusplinger Plattenkalk, 2nd ed. München: Pfeil.

    Google Scholar 

  • Dietl, G., G. Schweigert, M. Franz, and M. Geyer. 1998. Profile des Nusplinger Plattenkalks (Oberjura, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde (Serie B) 265: 1–37.

    Google Scholar 

  • Dollo, L. 1912. Les Céphalopodes adaptés à la vie nectique secondaire et benthique tertiaire. Zoologisches Jahrbuch (Suppl.) 15 (1): 105–140.

    Google Scholar 

  • Donovan, D.T. 1977. Evolution of the dibranchiate Cephalopoda. Symposia of the Zoological Society of London 38: 15–48.

    Google Scholar 

  • Donovan, D.T. 1995. A specimen of Trachyteuthis (Coleoidea) with fins from the upper Jurassic of Solnhofen (Bavaria). Stuttgarter Beiträge zur Naturkunde (Serie B) 235: 1–8.

    Google Scholar 

  • Donovan, D.T., and D. Fuchs. 2015. Part M, chapter 10: fossilized soft tissues in Coleoidea. Treatise Online 73: 1–30.

    Google Scholar 

  • Doyle, P., D.T. Donovan, and M. Nixon. 1994. Phylogeny and systematics of the Coleoidea. The University of Kansas Paleontological Contributions (New Series) 5: 1–15.

    Google Scholar 

  • Engeser, T. 1988a. The Mollusca. Paleontology & Neontology of Cephalopods. In Fossil “Octopods”—a critical review, eds. M.R. Clarke, and E.R. Trueman, 81–87. London: Academic Press.

    Google Scholar 

  • Engeser, T. 1988b. Fossilium Catalogus. I: Animalia. In Vampyromorpha (“Fossile Teuthiden”), ed. F. Westphal, 1–167. Amsterdam: Kugler Publications.

    Google Scholar 

  • Engeser, T. 1990. Phylogeny of the fossil coleoid Cephalopoda (Mollusca). Berliner geowissenschaftliche Abhandlungen (A) 124: 123–191.

    Google Scholar 

  • Fischer, J.-C., and B. Riou. 1982. Le plus ancien Octopode connu (Cephalopoda, Dibranchiata): Proteroctopus ribeti nov. gen., nov. sp., du Callovien de l’Ardeche (France). Comptes Rendus de l’Academie des Sciences de Paris (Serie B) 295: 277–280.

    Google Scholar 

  • Fuchs, D. 2009. Octobrachia—a diphyletic taxon? Berliner Paläobiologische Abhandlungen 10: 182–192.

    Google Scholar 

  • Fuchs, D. 2016. Part M, chapter 9B: the gladius and gladius vestige in fossil Coleoidea. Treatise Online 83: 1–23.

    Google Scholar 

  • Fuchs, D. 2017. A new peculiar muensterellid coleoid (Cephalopoda) from the Kimmeridge Clay of Dorset (England). Proceedings of the Geologists’ Association. https://doi.org/10.1016/j.pgeola.2017.07.004.

    Google Scholar 

  • Fuchs, D., G. Bracchi, and R. Weis. 2009. New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hakel and Hadjoula (Lebanon). Palaeontology 52 (1): 65–81.

    Article  Google Scholar 

  • Fuchs, D., T. Engeser, and H. Keupp. 2007. Gladius shape variation in coleoid cephalopod Trachyteuthis from the Upper Jurassic Nusplingen and Solnhofen Plattenkalks. Acta Palaeontologica Polonica 52 (3): 575–589.

    Google Scholar 

  • Fuchs, Dirk, and Y. Iba. 2015. The gladiuses in coleoid cephalopods: homology, parallelism, or convergence? Swiss Journal of Palaeontology 134: 187–197.

    Article  Google Scholar 

  • Fuchs, D., Y. Iba, H. Tischlinger, H. Keupp, and C. Klug. 2016a. The locomotion system of fossil Coleoidea (Cephalopoda) and its phylogenetic significance. Lethaia 49: 433–454. https://doi.org/10.1111/let.12155.

    Article  Google Scholar 

  • Fuchs, D., H. Keupp, and T. Engeser. 2003. New records of soft parts of Muensterella scutellaris Muenster, 1842 (Coleoidea) from the Late Jurassic Plattenkalks of Eichstätt and their significance for octobrachian relationships. Berliner Paläobiologische Abhandlungen 3: 101–111.

    Google Scholar 

  • Fuchs, D., and N.L. Larson. 2011a. Diversity, morphology, and phylogeny of coleoid cephalopods from the Upper Cretaceous Plattenkalks of Lebanon—part I: Prototeuthidina. Journal of Paleontology 85 (2): 234–249.

    Article  Google Scholar 

  • Fuchs, D., and N.L. Larson. 2011b. Diversity, morphology and phylogeny of coleoid cephalopods from the Upper Cretaceous Plattenkalks of Lebanon—part II: Teudopseina. Journal of Paleontology 85 (5): 815–834.

    Article  Google Scholar 

  • Fuchs, D., A. Reitano, G. Insacco, and Y. Iba. 2016b. The first coleoid cephalopods from the Upper Cenomanian of Sicily (Italy) and their implications for the systematic-phylogenetic position of the Palaeololiginidae (Teudopseina). Journal of Systematic Palaeontology 15 (6): 499–512.

    Article  Google Scholar 

  • Fuchs, D., and R. Weis. 2010. Taxonomy, morphology and phylogeny of Lower Jurassic teudopseid coleoids (Cephalopoda). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 257 (3): 351–366.

    Article  Google Scholar 

  • Grimpe, G. 1916. Chunioteuthis: eine neue Cephalopodengattung. Zoologischer Anzeiger 46: 249–259.

    Google Scholar 

  • Haas, W. 2002. Cephalopods—present & past. In The evolutionary history of the eight-armed Coleoidea, eds. H. Summesberger, K. Histon, and A. Daurer, 341–351. (= Abhandlungen der Geologischen Bundesanstalt in Wien 57).

    Google Scholar 

  • Haeckel E. [H.P.A.] 1866. Generelle Morphologie der Organismen. Allgemeine Entwicklungsgeschichte der Organismen. Berlin: Georg Reimer.

  • Hewitt, R.A., and J.W.M. Jagt. 1999. Maastrichtian Ceratisepia and Mesozoic cuttlebone homeomorphs. Acta Palaeontologica Polonica 44 (3): 305–326.

    Google Scholar 

  • Jeletzky, J.A. 1966. Comparative morphology, phylogeny and classification of fossil Coleoidea. Paleontological Contributions, University of Kansas Mollusca 7: 1–166.

    Google Scholar 

  • Kluessendorf, J., and P. Doyle. 2000. Pohlsepia mazonensis, an early “Octopus” from the Carboniferous of Illinois, USA. Palaeontology 43 (5): 919–926.

    Article  Google Scholar 

  • Klug, C., G. Schweigert, G. Dietl, and D. Fuchs. 2005. Coleoid beaks from the Nusplingen Lithographic Limestone (Late Kimmeridgian, SW Germany). Lethaia 38: 173–192.

    Article  Google Scholar 

  • Klug, C., G. Schweigert, D. Fuchs, and G. Dietl. 2010a. First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany). Lethaia 43: 445–456.

    Article  Google Scholar 

  • Klug, C., G. Schweigert, and G. Dietl. 2010b. A new Plesioteuthis with beak from the Kimmeridgian of Nusplingen (Germany). Ferrantia 59: 73–77.

    Google Scholar 

  • Kruta, I., I. Rouget, S. Charbonnier, J. Bardin, V. Fernandez, D. Germain, A. Brayard, and N. Landman. 2016. Proteroctopus ribeti in coleoid evolution. Palaeontology 59 (6): 767–773.

    Article  Google Scholar 

  • Larson, N.L. 2010. Fossil coleoids from the Late Cretaceous (Campanian & Maastrichtian) of the Western Interior. Ferrantia 59: 78–113.

    Google Scholar 

  • Leach, W.E. 1817. Synopsis of the Orders, Families, and Genera of the Class Cephalopoda. The Zoological Miscellany, Being Descriptions of new or Interesting Animals 3: 137–141.

    Google Scholar 

  • Naef, A. 1922. Die fossilen Tintenfische—Eine paläozoologische Monographie. Jena: Gustav Fischer.

    Book  Google Scholar 

  • Roger, J. 1944a. Le plus ancien Cephalopode Octopode fossil connu: Palaeoctopus newboldi (Sowerby 1846) Woodward. Bulletin de la Société Linnéenne de Lyon 13 (9): 114–118.

    Article  Google Scholar 

  • Roger, J. 1944b. Phylogenie des Cephalopodes Octopodes: Palaeoctopus newboldi (Sowerby 1846) Woodward. Bulletin de la Societe Geologique de France 14: 83–99.

    Google Scholar 

  • Roger, J. 1952. Sous-classes des Dibranchiata Owen 1836. In Traité de Paléontologie, ed. J. Piveteau, 689–755. Paris: Masson.

    Google Scholar 

  • Schweigert, G. 1998. Die Ammonitenfauna des Nusplinger Plattenkalks (Ober-Kimmeridgium, Beckeri-Zone, Ulmense-Subzone, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde (Serie B) 267: 1–61.

    Google Scholar 

  • Schweigert, G. 1999. Erhaltung und Einbettung von Belemniten im Nusplinger Plattenkalk (Ober-Kimmeridgium, Beckeri-Zone, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde (Serie B) 273: 1–35.

    Google Scholar 

  • Schweigert, G. 2007. Ammonite biostratigraphy as a tool for dating Upper Jurassic lithographic limestones from South Germany—first results and open questions. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 245: 117–125.

    Article  Google Scholar 

  • Schweigert, G., and G. Dietl. 2010. The Coleoidea of the upper Kimmeridgian Nusplingen Lithographic Limestone (Upper Jurassic, SW Germany)—diversity, preservation and palaeoecology. Ferrantia 59: 165–175.

    Google Scholar 

  • Seibel, B.A., E.V. Thuesen, and J.J. Childress. 1998. Flight of the vampire: ontogenetic gait-transition in vampyroteuthis infernalis (Cephalopoda: Vampyromorpha). The Journal of Experimental Biology 201 (16): 2413–2424.

    Google Scholar 

  • Starobogatov, Y.I. 1983. Taxonomy and ecology of Cephalopoda. In The system of the Cephalopoda, eds. Y.I. Starobogatov, and N. Kir Nesis, 4–7. Leningrad: Zoological Institute, USSR Academy of Sciences.

    Google Scholar 

  • Stevens, K., J. Mutterlose, and G. Schweigert. 2014. Belemnite ecology and the environment of the Nusplingen Plattenkalk (Late Jurassic, southern Germany): evidence from stable isotope data. Lethaia 47 (4): 512–523.

    Article  Google Scholar 

  • Sutton, M., C. Perales-Raya, and I. Gilbert. 2015. A phylogeny of fossil and living neocoleoid cephalopods. Cladistics 32 (3): 297–307.

    Article  Google Scholar 

  • Vecchione, M., and R.E. Young. 1997. Aspects of the functional morpholoy of cirrate octopods: Locomotion and feeding.Vie et Milieu 47 (2): 101–110.

    Google Scholar 

  • Villanueva, R., M. Segonzac, and A. Guerra. 1997. Locomotion modes of deep-sea cirrate octopods (Cephalopoda) based on observations from video recordings on the Mid-Atlantic Ridge. Marine Biology 129: 113–122.

    Article  Google Scholar 

  • Voight, J.R. 1997. Cladistic analysis of the octopods based on morphological characters. Journal of Molluscan Studies 63: 311–325.

    Article  Google Scholar 

  • Wade, M. 1993. New Kelaenida and Vampyromorpha: cretaceous squid from Queensland. Memoirs of the Association of Australasian Paleontologists 15: 353–374.

    Google Scholar 

  • Woodward, H. 1896. On a Fossil Octopus (Calais Newboldi, J. de C. Sby. MS.) from the Cretaceous of the Lebanon. Quarterly Journal of the Geological Society of London 52: 229–234.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the technicians Martin Kapitzke and Markus Rieter who prepared the studied material. Moreover, we acknowledge the hard work of our former and present volunteers during the excavation of the Nusplingen Plattenkalk, namely Gerd Dietl, Falk-Horst Epping, Rolf Hugger, August Ilg, and Burkhart Russ. Thanks to Helmut Tischlinger, we are able to provide top-quality UV photographs of the studied specimens. More thanks go to René Hoffmann and a second anonymous reviewer whose thorough review helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Fuchs.

Additional information

Handling editor: Christian Klug.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, D., Schweigert, G. First Middle–Late Jurassic gladius vestiges provide new evidence on the detailed origin of incirrate and cirrate octopuses (Coleoidea). PalZ 92, 203–217 (2018). https://doi.org/10.1007/s12542-017-0399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-017-0399-8

Keywords

Schlüsselwörter

Navigation