Skip to main content
Log in

Optimization for Whole Body Reaching Motion Without Singularity

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents an algorithm optimizing the whole-body reaching motion of the humanoid robot. After the humanoid robot reaching to the target object, the robot will perform a task such as lifting up the object, opening the door, closing the valve, etc. In order to perform such tasks, the arm configuration space of the robot should not be in the singular configuration that the robot loses its ability to move the end-effector in some direction no matter how it moves its joints. Hence, the robot should generate reaching motion without singularity for a given target point. To yield a solution for this issue, we divided singular cases into two cases through the Jacobian analysis for the 7 DOF arm of our humanoid robot which of the wrist joint has a spherical joint structure that three joint axes intersect one point. By means of self-motion of the redundant arm, one is able to escape is defined as ‘escapable singularity’ and the contrary is defined as ‘inescapable singularity’. The escapable singularity is addressed by the proposed low computing singularity avoidance control. Since the inescapable singularity cannot be avoided by self-motion, the proposed approach used pelvis motion to control shoulder position itself which is the base frame of the arm. To optimize the pelvis motion, we formulate a minimization problem for a simple kinematic model representing pelvis motion with newly defined a geometric constraint. The geometric constraint is selected by the result of the Monte Carlo method for four upper joints because the inescapable singularity is occurred by the four upper joints space only. To demonstrate the feasibility of the proposed optimization, the randomly stacked debris is put in front of the humanoid robot, and the robot would reach the debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yoshikawa, T. (1985). Manipulability of robotic mechanisms. The International Journal of Robotics Research, 4(2), 3–9.

    Article  Google Scholar 

  2. Guilamo, L., et al. (2006). Manipulability optimization for trajectory generation. In Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006. IEEE.

  3. Kim, H., et al. (2011). Redundancy resolution of a human arm for controlling a seven DOF wearable robotic system. In 2011 Annual international conference of the IEEE engineering in medicine and biology society. IEEE.

  4. Nagatani, K., et al. (2002). Motion planning for mobile manipulator with keeping manipulability. In IEEE/RSJ international conference on intelligent robots and systems, 2002 (Vol. 2). IEEE.

  5. Vahrenkamp, N., et al. (2015). IK-Map: An enhanced workspace representation to support inverse kinematics solvers. In 2015 IEEE-RAS 15th international conference on humanoid robots (humanoids). IEEE.

  6. Guan, Y., Yokoi, K., & Zhang, X. (2008). Numerical methods for reachable space generation of humanoid robots. The International Journal of Robotics Research, 27(8), 935–950.

    Article  Google Scholar 

  7. Porges, O., et al. (2014). Reachability and capability analysis for manipulation tasks. In ROBOT2013: First Iberian robotics conference. Springer International Publishing.

  8. Nishiwaki, K., et al. (2005). Whole-body cooperative balanced motion generation for reaching. International Journal of Humanoid Robotics, 2(04), 437–457.

    Article  Google Scholar 

  9. Tang, B., Chen, T., & Atkeson, C. G. (2015). Humanoid full-body manipulation planning with multiple initial guesses and key postures. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE.

  10. Bedrossian, N. S. (1990). Classification of singular configurations for redundant manipulators. In 1990 IEEE international conference on robotics and automation, 1990. IEEE.

  11. Kim, J.-Y. (2015). Quadruped walking control of DRC-HUBO. Journal of the Korean Society of Manufacturing Technology Engineers, 24(5), 548–552.

    Article  Google Scholar 

  12. Lim, J., et al. (2016). Robot system of DRC-HUBO+ and control strategy of team KAIST in DARPA robotics challenge finals. Journal of Field Robotics, 34, 802–829.

    Article  Google Scholar 

  13. Hayakawa, M., et al. (2008). Singularity avoidance by inputting angular velocity to a redundant axis during cooperative control of a teleoperated dual-arm robot. In IEEE international conference on robotics and automation, 2008. ICRA 2008. IEEE.

  14. Marani, G., et al. (2002). A real-time approach for singularity avoidance in resolved motion rate control of robotic manipulators. IEEE international conference on robotics and automation, 2002. ICRA'02 (Vol. 2). IEEE.

  15. Cheng, F.-T., Chen, J.-S., & Kung, F.-C. (1998). Study and resolution of singularities for a 7-DOF redundant manipulator. IEEE Transactions on Industrial Electronics, 45(3), 469–480.

    Article  Google Scholar 

  16. Choi, K.-J., & Hong, D. S. (2010). Posture optimization for a humanoid robot using a simple genetic algorithm. International Journal of Precision Engineering and Manufacturing, 11(3), 381–390.

    Article  Google Scholar 

  17. Siciliano, B. (1990). Kinematic control of redundant robot manipulators: A tutorial. Journal of intelligent and robotic systems, 3(3), 201–212.

    Article  Google Scholar 

  18. Xu, W., et al. (2016). Singularity analysis and avoidance for robot manipulators with nonspherical wrists. IEEE Transactions on Industrial Electronics, 63(1), 277–290.

    Article  Google Scholar 

  19. Lee, I., et al. (2017). Camera-laser fusion sensor system and environmental recognition for humanoids in disaster scenarios.". Journal of Mechanical Science and Technology, 31(6), 2997–3003.

    Article  Google Scholar 

  20. Lee, I., et al. (2015). Collision detection system for the practical use of the humanoid robot. In 2015 IEEE-RAS 15th international conference on humanoid robots (humanoids). IEEE.

  21. Lee, I., Oh, J., & Bae, H. (2018). Constrained whole body motion planning in task configuration and time. International Journal of Precision Engineering and Manufacturing, 19(11), 1651–1658.

    Article  Google Scholar 

Download references

Acknowledgements

This work has supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2021R1C1C1009989). This work was supported by BK21PLUS, Creative Human Resource Education and Research Programs for ICT Convergence in the 4th industrial Revolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inho Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Decoupling the manipulator Jacobian is derived as follows. The joint space and the task spaces can be derived by the forward kinematics \(\mathrm{FK}\). The Jacobian matrix is obtained by the first derivative from the forward kinematics.

$${X}_{E}=\mathrm{FK}\left(\Theta \right)\, \mathrm{with\, } \Theta={\left[{\theta }_{1} {\theta }_{2} {\theta }_{3} {\theta }_{4} {\theta }_{5} {\theta }_{6} {\theta }_{7}\right]}^{T}$$
$${\dot{X}}_{E}=\frac{\partial \mathrm{FK}\left(\Theta \right)}{\partial\Theta }\cdot \dot{\Theta }=\mathrm{J}\dot{\Theta }$$

Since the all joints of the DRC-HUBO + arm are revolute, the analytic Jacobian matrix is

$$\mathrm{J}=\left[\begin{array}{c}{\overrightarrow{z}}_{1}\times {\overrightarrow{p}}_{1}\\ {\overrightarrow{z}}_{1}\end{array} \begin{array}{c}{\overrightarrow{z}}_{2}\times {\overrightarrow{p}}_{2}\\ {\overrightarrow{z}}_{2}\end{array} \cdots \begin{array}{c}{\overrightarrow{z}}_{7}\times {\overrightarrow{p}}_{7}\\ {\overrightarrow{z}}_{7}\end{array}\right]$$

The vector from joint origin to end-effector \({\overrightarrow{p}}_{i}\) can be divided into following two vectors.

$$\begin{aligned}&{\overrightarrow{p}}_{i}={\overrightarrow{p}}_{W}+{\overrightarrow{p}}_{iW}\\ &\mathrm{where }\,\,{\overrightarrow{p}}_{i}={O}_{E}-{O}_{i}, \,\,{\overrightarrow{p}}_{W}={O}_{E}-{O}_{W}, \,\,{\overrightarrow{p}}_{iW}={O}_{W}-{O}_{i}\end{aligned}$$

\({\overrightarrow{p}}_{W}\) is a position vector from wrist to end-effector and the \({\overrightarrow{p}}_{iW}\) is a position vector from ith joint origin to wrist. Then the Jacobian matrix of the 1–4th columns are divided into two terms by superposition rule.

$$\left[{\overrightarrow{z}}_{1}\times {\overrightarrow{p}}_{1} {\overrightarrow{z}}_{2}\times {\overrightarrow{p}}_{2} {\overrightarrow{z}}_{3}\times {\overrightarrow{p}}_{3} {\overrightarrow{z}}_{4}\times {\overrightarrow{p}}_{4}\right]=\left[{\overrightarrow{z}}_{1}\times {\overrightarrow{p}}_{W} {\overrightarrow{z}}_{2}\times {\overrightarrow{p}}_{W} {\overrightarrow{z}}_{3}\times {\overrightarrow{p}}_{W} {\overrightarrow{z}}_{4}\times {\overrightarrow{p}}_{W}\right]+\left[{\overrightarrow{z}}_{1}\times {\overrightarrow{p}}_{1W} {\overrightarrow{z}}_{2}\times {\overrightarrow{p}}_{2W} {\overrightarrow{z}}_{3}\times {\overrightarrow{p}}_{3W} {\overrightarrow{z}}_{4}\times {\overrightarrow{p}}_{4W}\right]$$

Left parts are simplified by skew symmetric matrix \(-[{\overrightarrow{p}}_{W}\sim ]\) of the \({\overrightarrow{p}}_{W}\).

$$\left[{\overrightarrow{z}}_{1}\times {\overrightarrow{p}}_{1} {\overrightarrow{z}}_{2}\times {\overrightarrow{p}}_{2} {\overrightarrow{z}}_{3}\times {\overrightarrow{p}}_{3} {\overrightarrow{z}}_{4}\times {\overrightarrow{p}}_{4}\right]=-\left[{\overrightarrow{p}}_{W}\sim \right]\left[{\overrightarrow{z}}_{1} {\overrightarrow{z}}_{2} {\overrightarrow{z}}_{3} {\overrightarrow{z}}_{4}\right]+\left[{\overrightarrow{z}}_{1}\times {\overrightarrow{p}}_{1W} {\overrightarrow{z}}_{2}\times {\overrightarrow{p}}_{2W} {\overrightarrow{z}}_{3}\times {\overrightarrow{p}}_{3W} {\overrightarrow{z}}_{4}\times {\overrightarrow{p}}_{4W}\right]$$

where

$$\left[{\overrightarrow{p}}_{W}\sim \right]=\left[\begin{array}{ccc}0& -{p}_{Wz}& {p}_{Wy}\\ {p}_{Wz}& 0& -{p}_{Wx}\\ {-p}_{Wy}& {p}_{Wx}& 0\end{array}\right]$$

As shown in above Fig. 2e, since the wrist joints cross the wrist position \({\overrightarrow{p}}_{i}={\overrightarrow{p}}_{W} (i=5{-}7)\), the right upper parts of the Jacobian can also be substituted by skew symmetric matrix as above equation.

$$\left[{\overrightarrow{z}}_{5}\times {\overrightarrow{p}}_{5} {\overrightarrow{z}}_{6}\times {\overrightarrow{p}}_{6} {\overrightarrow{z}}_{7}\times {\overrightarrow{p}}_{7}\right]=-\left[{\overrightarrow{p}}_{W}\sim \right]\left[{\overrightarrow{z}}_{5} {\overrightarrow{z}}_{6} {\overrightarrow{z}}_{7}\right]$$

Thus, the Jacobian matrix of the 7 DOFs manipulator which of configuration likes can be expressed by four sub matrix \({\mathrm{J}}_{A}\), \({\mathrm{J}}_{B}, {\mathrm{J}}_{C}, {\mathrm{J}}_{D}\).

$$\mathrm{J}=\left[\begin{array}{cc}{\mathrm{J}}_{A}{\mathrm{J}}_{B}+{\mathrm{J}}_{C}& {\mathrm{J}}_{A}{\mathrm{J}}_{D}\\ {\mathrm{J}}_{B}& {\mathrm{J}}_{D}\end{array}\right]$$

where \({\mathrm{J}}_{A}=-\left[{\overrightarrow{p}}_{W}\sim \right]\), \({\mathrm{J}}_{B}=\left[{\overrightarrow{z}}_{1} {\overrightarrow{z}}_{2} {\overrightarrow{z}}_{3} {\overrightarrow{z}}_{4}\right]\), \({\mathrm{J}}_{C}=\left[{\overrightarrow{z}}_{1}\times {\overrightarrow{p}}_{1W} {\overrightarrow{z}}_{2}\times {\overrightarrow{p}}_{2W} {\overrightarrow{z}}_{3}\times {\overrightarrow{p}}_{3W} {\overrightarrow{z}}_{4}\times {\overrightarrow{p}}_{4W}\right]\), \({\mathrm{J}}_{D}=\left[{\overrightarrow{z}}_{5} {\overrightarrow{z}}_{6} {\overrightarrow{z}}_{7}\right]\).

Finally, this formulation divided into an upper block triangular matrix and a lower block triangular matrix.

$$\begin{aligned}\mathrm{J}&=\left[\begin{array}{cc}{\mathrm{J}}_{A}{\mathrm{J}}_{B}+{\mathrm{J}}_{C}& {\mathrm{J}}_{A}{\mathrm{J}}_{D}\\ {\mathrm{J}}_{B}& {\mathrm{J}}_{D}\end{array}\right]\\ &=\left[\begin{array}{cc}{\mathrm{I}}_{3}& {\mathrm{J}}_{A}\\ {0}_{3\times 3}& {\mathrm{I}}_{3}\end{array}\right]\left[\begin{array}{cc}{\mathrm{J}}_{C}& {0}_{3\times 3}\\ {\mathrm{J}}_{B}& {\mathrm{J}}_{D}\end{array}\right]\\ &={\mathrm{U}}_{6}\cdot {\mathrm{J}}_{W} \end{aligned}$$

The manipulability which is defined by [1] of this Jacobian is obtained.

$$\begin{aligned}\mathrm{det}\left(\mathrm{J}{\cdot \mathrm{J}}^{T}\right)&=\mathrm{det}\left({\mathrm{U}}_{6}\cdot {\mathrm{J}}_{W}\cdot {\mathrm{J}}_{W}^{T}\cdot {\mathrm{U}}_{6}^{T}\right)\\ &=\mathrm{det}({\mathrm{U}}_{6}) \cdot \mathrm{det}({\mathrm{J}}_{W}\cdot {\mathrm{J}}_{W}^{T}) \cdot \mathrm{det}({\mathrm{U}}_{6}^{T})\\ &=\mathrm{det}({\mathrm{J}}_{W}\cdot {\mathrm{J}}_{W}^{T})\end{aligned}$$

Consequently, when we observe that the determinant of the \({\mathrm{J}}_{W}\) is zero, the original Jacobian matrix is also singularity (Corollary 1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H., Lee, I. Optimization for Whole Body Reaching Motion Without Singularity. Int. J. Precis. Eng. Manuf. 23, 639–651 (2022). https://doi.org/10.1007/s12541-022-00623-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00623-4

Keywords

Navigation