Skip to main content
Log in

Effect of Ultrasonic Vibration Tensile on the Mechanical Properties of High-Volume Fraction SiCp/Al Composite

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Silicon carbide particle-reinforced aluminum matrix composite has been widely used in the military and aerospace industry due to its special performance; however, there remain many problems in processing. The present paper introduces an ultrasonic vibration tensile device with a view to investigating an ultrasonic vibration tensile specimen. The results show that there are three major stages in the change in stress of the material under ultrasonic vibration: the ultrasonic stress superposition effect, softening effect, and Hall–Petch strengthening effect, these three effects occupy different proportions in different tensile stages. In addition, increasing the frequency of ultrasonic vibration increased the degree of stress reduction. Increasing the ultrasonic vibration amplitude reduced the fracture strength of the material. Comparison of the fracture morphology shows that the conventional condition was mainly interfacial peeling of SiC particles, and cleavage of the fracture occurred under ultrasonic vibration conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aristizabal, K., Katzensteiner, A., Leoni, M., Mücklich, F., & Suáreza, S. (2019). Evolution of the lattice defects and crystalline domain size in carbon nanotube metal matrix composites processed by severe plastic deformation. Materials Characterization, 154, 344–352.

    Article  Google Scholar 

  2. Owoeye, S. S., Folorunso, D. O., Oji, B., & Borisade, S. G. (2018). Zinc-aluminum (ZA-27)-based metal matrix composites: A review article of synthesis, reinforcement, microstructural, mechanical, and corrosion characteristics. International Journal of Advanced Manufacturing Technology, 100(1–4), 373–380.

    Google Scholar 

  3. Quintanilla, F. H., & Leckey, C. A. C. (2018). Lebedev scheme for ultrasound simulation in composites. Ultrasonics, 86, 28–40.

    Article  Google Scholar 

  4. Avettand-Fènoël, M. N., & Simar, A. (2016). A review about friction stir welding of metal matrix composites. Materials Characterization, 120, 1–17.

    Article  Google Scholar 

  5. Gao, Y. Y., Qiu, F., Geng, R., Zhao, W. X., Yang, D. L., Zuo, R., et al. (2018). Preparation and characterization of the Al–Cu–Mg–Si–Mn composites reinforced by different surface modified SiCp. Materials Characterization, 141, 156–162.

    Article  Google Scholar 

  6. Teng, X. G., Chen, W. Q., Huo, D. H., Shyha, I., & Lin, C. (2018). Comparison of cutting mechanism when machining micro and nanoparticles reinforced SiC/Al metal matrix composites. Composite Structures, 203, 636–647.

    Article  Google Scholar 

  7. Gatea, S., Ou, H. G., & McCartney, G. (2018). Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments. Materials Characterization, 142, 365–376.

    Article  Google Scholar 

  8. Wang, T., Xie, L. J., & Wang, X. B. (2015). Simulation study on defect formation mechanism of the machined surface in milling of high-volume fraction SiCp/Al composite. International Journal of Advanced Manufacturing Technology, 79(5–8), 1185–1194.

    Article  Google Scholar 

  9. Zha, H. T., Feng, P. F., Zhang, J. F., Yu, D. W., & Wu, Z. J. (2018). Material removal mechanism in rotary ultrasonic machining of high-volume fraction SiCp/Al composites. International Journal of Advanced Manufacturing Technology, 97(5–8), 2099–2109.

    Article  Google Scholar 

  10. Liu, C. S., Zhao, B., Gao, G. F., & Jiao, F. (2002). Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al. Journal of Materials Processing Technology, 129(1), 196–199.

    Article  Google Scholar 

  11. Xiang, D. H., Liu, H. T., Jiang, X., Liang, S., & Yang, G. B. (2013). Study on tool wear of high-volume fraction SiCp/Al composites with ultrasonic vibration high speed milling. Applied Mechanics and Materials, 252, 198–201.

    Article  Google Scholar 

  12. Xiang, D. H., Yue, G. X., Liu, H. T., & Zhao, B. (2012). Study on surface roughness in ultrasonic high-speed milling of SiCp/Al composites. Materials Science Forum, 723, 214–218.

    Article  Google Scholar 

  13. Zhou, M., & Zheng, W. (2016). A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites. International Journal of Advanced Manufacturing Technology, 87(9–12), 3321–3324.

    Google Scholar 

  14. Jia, Y. X., Wang, G. C., & Zhao, Z. D. (1999). Influence of plastic working on the microstructure of SiCp/Al composite. Aeronautical Manufacturing Technology, 4, 23–24.

    Google Scholar 

  15. Sidhu, S. S., Batish, A., & Kumar, S. (2013). Fabrication and electrical discharge machining of metal-matrix composites: A review. Journal of Reinforced Plastics and Composites, 32(17), 1310–1320.

    Article  Google Scholar 

  16. Jiao, K., Huang, S., & Xu, L. (2015). Feature classification of high-volume SiCp/Al composites under the condition of two-dimensional cutting based on cluster analysis theory. International Journal of Advanced Manufacturing Technology, 78(5–8), 677–686.

    Article  Google Scholar 

  17. Yuan, Z., Li, F., & Xue, F. (2015). An investigation of micro-mechanical properties of Al matrix in SiC/Al composite by indentation experiments. Journal of Materials Engineering and Performance, 24(2), 654–663.

    Article  Google Scholar 

  18. Yuan, Z., Li, F., & Chen, B. (2014). Further investigation of particle reinforced aluminum matrix composites by indentation experiments. Journal of Materials Research., 29(4), 586–595.

    Article  Google Scholar 

  19. Wang, J. P. (2015). Theoretical and experimental research of constitutive model of ultrasonic vibration assisted forming. Thesis submitted to the faculty of the Shanghai Jiao Tong University in partial fulfillment of the requirements for the degree of Master of Materials Engineering.

  20. Yang, T. Q. (1990). Viscoelastic mechanics. Wuhan: Huazhong University of Technology Press.

    Google Scholar 

  21. Long, X. N. (1999). Soil plasticity mechanics. Hangzhou: Zhejiang University Press.

    Google Scholar 

  22. Wang, C. J., Liu, Y., & Guo, B. (2016). Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil: Experiments and modeling. Materials & Design, 112, 246–253.

    Article  Google Scholar 

  23. Yao, Z. H., Kim, G. Y., & Wang, Z. H. (2012). Acoustic softening and residual hardening in aluminum: Modeling and experiments. International Journal of Plasticity, 39, 75–78.

    Article  Google Scholar 

  24. Zhang, Y. D. (1993). Ultrasonic machining and its application. Beijing: National Defense Industry Press.

    Google Scholar 

  25. Shi, D. K. (1998). Dislocation and material strength. Xi'an: Xi'an Jiao tong University Press.

    Google Scholar 

  26. Liu, Y., Suslov, S., & Han, Q. (2012). Microstructure of the pure copper produced by upsetting with ultrasonic vibration. Materials Letters, 67(1), 52–55.

    Article  Google Scholar 

  27. Zhou, H. Y., Cui, H. Z., & Qin, Q. H. (2017). A comparative study of mechanical and microstructural characteristics of aluminum and titanium undergoing ultrasonic assisted compression testing. Materials Science & Engineering A, 682, 376–388.

    Article  Google Scholar 

  28. Panin, A. V., Son, A. A., & Pochivalov, Y. I. (2004). The effect of ultrasonic treatment on mechanical behavior of titanium and steel specimens. Theoretical & Applied Fracture Mechanics, 41(1), 163–172.

    Article  Google Scholar 

  29. Lin, Z. M. (1987). Principle and design of ultrasonic horn. Beijing: Science Press.

    Google Scholar 

  30. Green, C. H. (2000). Stress amplitude analysis in a generalized ultrasonic fatigue dumbbell specimen. Journal of Physics D-Applied Physics, 24(3), 469–477.

    Article  Google Scholar 

  31. Matikas, T. E. (2001). Specimen design for fatigue testing at very high frequencies. Journal of Sound and Vibration, 247(4), 673–681.

    Article  Google Scholar 

  32. Green, C. H. (1979). Radius optimization in an ultrasonic specimen with a circular gauge profile. Journal of Physics D-Applied Physics, 12(7), 1191–1194.

    Article  Google Scholar 

  33. Green, C. H., & Guiu, F. (1976). The ultrasonic fatigue testing of specimens much shorter than the testing frequency half-wavelength of the material. Journal of Physics D-Applied Physics, 9(6), 1071–1078.

    Article  Google Scholar 

  34. Nevill, G. E. (1975). Effect of vibration on the yield strength of a low carbon steel. Houston: The Rice Institute.

    Google Scholar 

  35. Yao, Z., Kim, G. Y., & Faidley, L. A. (2010). Micro pin extrusion of metallic materials assisted by ultrasonic vibration. In ASME 2010 international manufacturing science and engineering conference. American Society of Mechanical Engineers (pp. 647–651).

  36. Wang, J. P. (2015). Theoretical and experimental research of constitutive model of ultrasonic vibration assisted formin. Thesis submitted to the faculty of the Shanghai Jiao Tong University in partial fulfillment of the requirements for the degree of Master of Materials Engineering.

  37. Fartashvand, V., Abdullah, A., & Sadough, S. A. (2016). Investigation of Ti–6Al–4V alloy acoustic softening. Ultrasonics Sonochemistry, 38, 744–749.

    Article  Google Scholar 

  38. Yao, Z., Kima, G. Y., & Faidley, L. A. (2012). Acoustic softening and residual hardening in aluminum: modeling and experiments. International Journal of Plasticity, 39(39), 75–87.

    Article  Google Scholar 

  39. Jiang, L. B. (2014). Experiment and simulation on vibration aided tensile and compressive process of aluminum alloy. Thesis submitted to the faculty of the Shan Dong University in partial fulfillment of the requirements for the degree of Master of Material Processing Engineering.

  40. Bai, Y., & Yang, M. (2015). Deformation analysis of brass in micro compression test with presence of ultrasonic vibration. International Journal of Precision Engineering Manufacturing, 16(4), 685–691.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported financially by the National Natural Science Foundation of China (No. 51975188), Henan Provincial Natural Science Foundation of China (No. 182300410200), and Open Research Fund of State Key Laboratory of High-Performance Complex Manufacturing, Central South University (No. Kfkt2017-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Hui Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, DH., Zhang, ZM., Wu, BF. et al. Effect of Ultrasonic Vibration Tensile on the Mechanical Properties of High-Volume Fraction SiCp/Al Composite. Int. J. Precis. Eng. Manuf. 21, 2051–2066 (2020). https://doi.org/10.1007/s12541-020-00335-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00335-7

Keywords

Navigation