Skip to main content
Log in

Second-order sliding mode control of a 3D overhead crane with uncertain system parameters

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper proposes a second-order sliding mode controller for a three-dimensional overhead crane in an extremely complicated operation with uncertain system parameters. Three actuators composed of trolley-moving, bridge-traveling, and cargo-hoisting forces simultaneously drive fine outputs comprising bridge motion, trolley translation, cable length, and two payload swing angles. Simulation and experiment are performed to investigate the controller qualities. The proposed controller asymptotically stabilizes and consistently maintains system response even when some system parameters are extensively varied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

m c :

cargo mass (kg)

m t :

trolley mass (kg)

m b :

lumped mass of bridge (kg)

m l :

equivalent mass of all rotating components of hoist (kg)

x :

trolley displacement (m)

l :

cargo suspended cable length (m)

θ and φ :

cargo swing angles (rad)

u t :

trolley-traveling force (N)

u b :

bridge-moving force (N)

u l :

cargo-lifting force (N)

References

  1. Sakawa, Y. and Sano, H., “Nonlinear Model and Linear Robust Control of Overhead Traveling Cranes,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 30, No. 4, pp. 2197–2207, 1997.

    Article  MATH  Google Scholar 

  2. Sawodny, O., Aschemann, H., and Lahres, S., “An Automated Gantry Crane as a Large Workspace Robot,” Control Engineering Practice, Vol. 10, No. 12, pp. 1323–1338, 2002.

    Article  Google Scholar 

  3. Giua, A., Seatzu, C., and Usai, G., “Observer-Controller Design for Cranes Via Lyapunov Equivalence,” Automatica, Vol. 35, No. 4, pp. 669–678, 1999.

    Article  MATH  Google Scholar 

  4. Sakawa, Y. and Shindo, Y., “Optimal Control of Container Cranes,” Automatica, Vol. 18, No. 3, pp. 257–266, 1982.

    Article  MATH  Google Scholar 

  5. Auernig, J. and Troger, H., “Time Optimal Control of Overhead Cranes with Hoisting of the Load,” Automatica, Vol. 23, No. 4, pp. 437–447, 1987.

    Article  MATH  Google Scholar 

  6. Al-Garni, A. Z., Moustafa, K. A. F., and Javeed Nizami, S., “Optimal Control of Overhead Cranes,” Control Engineering Practice, Vol. 3, No. 9, pp. 1277–1284, 1995.

    Article  Google Scholar 

  7. Wang, Z. and Surgenor, B. W., “A Problem with the LQ Control of Overhead Cranes,” Journal of Dynamic Systems, Measurement, and Control, Vol. 128, No. 2, pp. 436–440, 2006.

    Article  Google Scholar 

  8. Park, H., Chwa, D., and Hong, K., “A Feedback Linearization Control of Container Cranes: Varying Rope Length,” International Journal of Control Automation and Systems, Vol. 5, No. 4, pp. 379–387, 2007.

    Google Scholar 

  9. Le, T. A., Kim, G. H., Kim, M. Y., and Lee, S. G., “Partial Feedback Linearization Control of Overhead Cranes with Varying Cable Lengths,” Int. J. Precis. Eng. Manuf., Vol. 13, No.4, pp. 501–507, 2012.

    Article  Google Scholar 

  10. Cheng, C. C. and Chen, C. Y., “Controller Design for an Overhead Crane System with Uncretainty,” Control Engineering Practice, Vol. 4, No. 5, pp. 645–653, 1996.

    Article  Google Scholar 

  11. Cho, H. C., Lee, J. W., Lee, Y. J., and Lee, K. S., “Lyapunov Theory based Robust Control of Complicated Nonlinear Mechanical Systems with Uncertainty,” Journal of Mechanical Science and Technology, Vol. 22, No. 11, pp. 2142–2150, 2008.

    Article  Google Scholar 

  12. Kim, C. S. and Hong, K. S., “Boundary Control of Container Cranes from the Perspective of Controlling an Axially Moving String System,” International Journal of Control, Automation and Systems, Vol. 7, No. 3, pp. 437–445, 2009.

    Article  Google Scholar 

  13. Kim, Y. S., Hong, K. S., and Sul, S. K., “Anti-Sway Control of Container Cranes: Inclinometer, Observer, and State Feedback,” International Journal of Control, Automation, and Systems, Vol. 2, No. 4, pp. 435–449, 2004.

    Google Scholar 

  14. Fang, Y., Dixon, W. E., Dawson, D. M., and Zergeroglu, E., “Nonlinear Coupling Control Laws for an Enderactuated Overhead Crane System,” IEEE/ASME Transactions on Mechatronics, Vol. 8, No. 3, pp. 418–423, 2003.

    Article  Google Scholar 

  15. Chwa, D., “Nonlinear Tracking Control of 3-D Overhead Cranes Against the Initial Swing Angle and the Variation of Payload Weight,” IEEE Transactions on Control Systems Technology, Vol. 17, No. 4, pp. 876–883, 2009.

    Article  Google Scholar 

  16. Moustafa, K. A., “Reference Trajectory Tracking of Overhead Cranes,” Journal of Dynamic Systems, Measurement, and Control, Vol. 123, No. 1, pp. 139–141, 2001.

    Article  MathSciNet  Google Scholar 

  17. Lee, H. H., “A New Approach for the Anti-Swing Control of Overhead Cranes with High-Speed Load Hoisting,” International Journal of Control, Vol. 76, No. 15, pp. 1493–1499, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  18. Lee, H. H., “A New Motion-Planning Scheme for Overhead Cranes with High-Speed Hoisting,” Journal of Dynamic Systems, Measurement, and Control, Vol. 126, No. 2, pp. 359–364, 2004.

    Article  Google Scholar 

  19. Lee, H. H., “Motion Planning for Three-Dimensional Overhead Cranes with High-Speed Load Hoisting,” International Journal of Control, Vol. 78, No. 12, pp. 875–886, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  20. Yang, J. H. and Yang, K. S., “Adaptive Coupling Control for Overhead Crane Systems,” Mechatronics, Vol. 17, No. 2, pp. 143–152, 2007.

    Article  Google Scholar 

  21. Yang, J. H. and Shen, S. H., “Novel Approach for Adaptive Tracking Control of a 3-D Overhead Crane System,” Journal of Intelligent & Robotic Systems, Vol. 62, No. 1, pp. 59–80, 2011.

    Article  MATH  Google Scholar 

  22. Teo, C. S., Tan, K. K., Lim, S. Y., Huang, S., and Tay, E. B., “Dynamic Modeling and Adaptive Control of a H-Type Gantry Stage,” Mechatronics, Vol. 17, No. 7, pp. 361–367, 2007.

    Article  Google Scholar 

  23. Cho, H. C. and Lee, K. S., “Adaptive Control and Stability Analysis of Nonlinear Crane Systems with Perturbation,” Journal of Mechanical Science and Technology, Vol. 22, No. 6, pp. 1091–1098, 2008.

    Article  Google Scholar 

  24. Sun, N., Fang, Y., Zhang, Y., and Ma, B., “A Novel Kinematic Coupling-based Trajectory Planning Method for Overhead Cranes,” IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 1, pp. 166–173, 2012.

    Article  Google Scholar 

  25. Omar, H. M. and Nayfeh, A. H., “Gain Scheduling Feedback Control for Tower Cranes,” Journal of Vibration and Control, Vol. 9, No. 3–4, pp. 399–418, 2003.

    Article  MATH  Google Scholar 

  26. Giua, A., Sanna, M., and Seatzu, C., “Observer-Controller Design for Three Dimensional Overhead Cranes using Time-Scaling,” Mathematical and Computer Modelling of Dynamical Systems, Vol. 7, No. 1, pp. 77–107, 2001.

    Article  MATH  Google Scholar 

  27. Corriga, G., Giua, A., and Usai, G., “An Implicit Gain-Scheduling Controller for Cranes,” IEEE Transactions on Control Systems Technology, Vol. 6, No. 1, pp. 15–20, 1998.

    Article  Google Scholar 

  28. Mizumoto, I., Chen, T., Ohdaira, S., Kumon, M., and Iwai, Z., “Adaptive Output Feedback Control of General MIMO Systems using Multirate Sampling and its Application to a Cart-Crane System,” Automatica, Vol. 43, No. 12, pp. 2077–2085, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  29. Ngo, Q. H., Hong, K. S., and Jung, I. H., “Adaptive Control of an Axially Moving System,” Journal of Mechanical Science and Technology, Vol. 23, No. 11, pp. 3071–3078, 2009.

    Article  Google Scholar 

  30. Lee, K., Coate, S., and Carroll, V. C., “Variable Structure Control Applied to Underactuated Robots,” Robotica, Vol. 15, No. 3, pp. 313–318, 1997.

    Article  Google Scholar 

  31. Ashrafiuon, H. and Erwin, R. S., “Sliding Mode Control of Underactuated Multibody Systems and its Application to Shape Change Control,” International Journal of Control, Vol. 81, No. 12, pp. 1849–1858, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  32. Sankaranarayanan, V. and Mahindrakar, A.D., “Control of a Class of Underactuated Mechanical Systems Using Sliding Modes,” IEEE Transactions on Robotics, Vol. 25, No. 2, pp. 459–467, 2009.

    Article  Google Scholar 

  33. Karkoub, M. A. and Zribi, M., “Robust Control Schemes for an Overhead Crane,” Journal of Vibration and Control, Vol. 7, No. 3, pp. 395–416, 2001.

    Article  MATH  Google Scholar 

  34. Bartolini, G., Pisano, A., and Usai, E., “Output-Feedback Control of container Cranes: A Comparative Analysis,” Asian Journal of Control, Vol. 5, No. 4, pp. 578–593, 2003.

    Article  Google Scholar 

  35. Ngo, Q. H. and Hong, K. S., “Sliding-Mode Antisway Control of an Offshore Container Crane,” IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 2, pp. 201–209, 2012.

    Article  Google Scholar 

  36. Bartolini, G., Pisano, A., and Usai, E., “Second-Order Sliding-Mode Control of Container Cranes,” Automatica, Vol. 38, No. 10, pp. 1783–1790, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  37. Lee, H. H., Liang, Y., and Segura, D., “A Sliding-Mode Antiswing Trajectory Control for Overhead Cranes with High-Speed Load Hoisting,” Journal of Dynamic Systems, Measurement, and Control, Vol. 128, No. 4, pp. 842–845, 2006.

    Article  Google Scholar 

  38. Almutairi, N. B. and Zribi, M., “Sliding Mode Control of a Three-Dimensional Overhead Crane,” Journal of Vibration and Control, Vol. 15, No. 11, pp. 1679–1730, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  39. Slotine, J. J. E. and Li, W., “Applied Nonlinear Control,” Prentice Hall, pp. 123, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Geul Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, L.A., Kim, JJ., Lee, SG. et al. Second-order sliding mode control of a 3D overhead crane with uncertain system parameters. Int. J. Precis. Eng. Manuf. 15, 811–819 (2014). https://doi.org/10.1007/s12541-014-0404-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0404-z

Keywords

Navigation