Skip to main content
Log in

Analysis on the photovoltaic property of Si quantum dot-sensitized solar cells

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This work first introduced Si quantum dots (QDs) for QD-sensitized solar cells (QDSCs). However, the particle size of Si QDs, which had visible light absorption, was relatively large. The paint-type Si QDSC was proposed in this work because Si QDs could not penetrate into nano-porous TiO2 network. Si QDs were synthesized by multi-hollow plasma discharge CVD and mixed with TiO2 paste. For better performance, thickness of Si-TiO2 layer was varied by coating times and Si-TiO2 films were optically and electrically analyzed. As a result, 6 times screen printed Si-TiO2 film had the best performance with the smallest internal impedance and the highest photon to current efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan, B. and Grätzel, M., “A Low-Cost, High-Efficiency Solar Cell based on Dye-Sensitized Colloidal TiO2 Films” Nature, Vol. 353, pp. 737–740, 1991.

    Article  Google Scholar 

  2. O’Regan, B., Grätzel, M., and Fitzmaurice, D., “Optical Electrochemistry I: Steady-State Spectroscopy of Conduction-Band Electrons in a Metal Oxide Semiconductor Electrode,” Chemical Physics Letters, Vol. 183, No. 1–2, pp. 89–93, 1991.

    Article  Google Scholar 

  3. Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., and et al., “Porphyrin-Sensitized Solar Cells with Cobalt (II/III) — Based Redox Electrolyte Exceed 12 Percent Efficiency,” Science, Vol. 334, No. 6056, pp. 629–634, 2011.

    Article  Google Scholar 

  4. Kim, M. S., Chun, D. M., Choi, J. O., Lee, J. C., Kim, K. S., and et al., “Room Temperature Deposition of TiO2 using Nano Particle Deposition System (NPDS): Application to Dye-Sensitized Solar Cell (DSSC),” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 749–752, 2011.

    Article  Google Scholar 

  5. Nagata, M., Baldwin, E., Kim, S., and Taya, M., “Design of Dye-Sensitized Solar Cells Integrated in Composite Panel Subjected to Bending,” Journal of Composite Materials, Vol. 47, No. 1, pp. 27–32, 2013.

    Article  Google Scholar 

  6. Seo, H., Son, M. K., Shin, I., Kim, J. K., Lee, K. J., and et al., “Faster Dye-Adsorption of Dye-Sensitized Solar Cells by Applying an Electric Field,” Electrochimica Acta, Vol. 55, No. 13, pp. 4120–4123, 2010.

    Article  Google Scholar 

  7. Shockley, W. and Queisser, H. J., “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” Journal of Applied Physics, Vol. 32, No. 3, pp. 510–519, 1961.

    Article  Google Scholar 

  8. Murphy, J. E., Beard, M. C., Norman, A. G., Ahrenkiel, S. P., Johnson, J. C., and et al., “PbTe Colloidal Nanocrystals: Synthesis, Characterization, and Multiple Exciton Generation,” Journal of the American Chemical Society, Vol. 128, No. 10, pp. 3241–3247, 2006.

    Article  Google Scholar 

  9. Robel, I., Subramanian, V., Kuno, M., and Kamat, P. V., “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films,” Journal of the American Chemical Society, Vol. 128, No. 7, pp. 2385–2393, 2006.

    Article  Google Scholar 

  10. Blackburn, J. L., Selmarten, D. C., Ellingson, R. J., Jones, M., Micic, O., and Nozik, A. J., “Electron and Hole Transfer from Indium Phosphide Quantum Dots,” Journal of Physical Chemistry B, Vol. 109, No. 7, pp. 2625–2631, 2005.

    Article  Google Scholar 

  11. Ju, T., Graham, R. L., Zhai, G., Rodriguez, Y. W., Breeze, A J., and et al., “High Efficiency Mesoporous Titanium Oxide PbS Quantum Dot Solar Cells at Low Temperature,” Applied Physics Letters, Vol. 97, No. 4, pp. 043106, 2010.

    Article  Google Scholar 

  12. Chen, Y., Maniruzzaman, M., and Kim, J., “Soft-Chemistry based Fabrication of Gallium Nitride Nanoparticles,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 3, pp. 573–576, 2011.

    Article  Google Scholar 

  13. Beard, M. C., Knutsen, K. P., Yu, P., Luther, J. M., Song, Q., and et al., “Multiple Exciton Generation in Colloidal Silicon Nanocrystals,” Nano Letters, Vol. 7, No. 8, pp. 2506–2512, 2007.

    Article  Google Scholar 

  14. Wilcoxon, J. and Samara, G., “Tailorable, Visible Light Emission from Silicon Nanocrystals,” Applied physics letters, Vol. 74, No. 21, pp. 3164–3166, 1999.

    Article  Google Scholar 

  15. Seo, H., Wang, Y., Sato, M., Uchida, G., Kamataki, K., and et al., “Improvement of Si Adhesion and Reduction of Electron Recombination for Si Quantum Dot-Sensitized Solar Cells,” Japanese Journal of Applied Physics, Vol. 52, No. 1, pp. 01AD05–01AD05–5, 2013.

    Article  Google Scholar 

  16. Seo, H., Wang, Y., Uchida, G., Kamataki, K., Itagaki, N., and et al.,“The Reduction of Charge Recombination and Performance Enhancement by the Surface Modification of Si Quantum Dot-Sensitized Solar Cell,” Electrochimica Acta, Vol. 81, pp. 213–217, 2012.

    Google Scholar 

  17. Shiratani, M., Koga, K., Ando, S., Inoue, T., Watanabe, Y., and et al., “Single Step Method to Deposit Si Quantum Dot Films using H2 + SiH4 VHF Discharges and Electron Mobility in a Si Quantum Dot Solar Cell,” Surface and Coatings Technology, Vol. 201, No. 9–11, pp. 5468–5471, 2007.

    Article  Google Scholar 

  18. Kakeya, T., Koga, K., Shiratani, M., Watanabe, Y., and Kondo, M., “Production of Crystalline Si Nano-Clusters using Pulsed H2 + SiH4 VHF Discharges,” Thin solid films, Vol. 506, No. pp. 288–291, 2006.

    Article  Google Scholar 

  19. Seo, H., Wang, Y., Sato, M., Uchida, G., Koga, K., and et al., “The Improvement on the Performance of Quantum Dot-Sensitized Solar Cells with Functionalized Si,” Thin Solid Films, Vol. 546, pp. 284–288, 2013.

    Article  Google Scholar 

  20. Watanabe, Y., “Formation and Behaviour of Nano/Micro-Particles in Low Pressure Plasmas”, Journal of Physics D: Applied Physics., Vol. 39, No. 19, pp. R329, 2006.

    Article  Google Scholar 

  21. Nguyen, L. H., Le Thanh, V., Débarre, D., Yam, V., and Bouchier, D., “Selective Growth of Ge Quantum Dots on Chemically Prepared SiO2/Si(001) Surfaces,” Materials Science and Engineering: B, Vol. 101, No. 1–3, pp. 199–203, 2003.

    Article  Google Scholar 

  22. Thanh, V. L., Ngo, T. T. T., Bui, H., Bouchier, D., Le, T. T. T., and Phan, K. H., “Selective Growth of SiGe Quantum Dots on Hydrogen-Passivated Si(100) Surfaces,” Thin Solid Films, Vol. 428, No. 1–2, pp. 144–149, 2003.

    Article  Google Scholar 

  23. Nakajima, A., Sugita, Y., Kawamura, K., Tomita, H. and Yokoyama, N., “Si Quantum Dot Formation with Low-Pressure Chemical Vapor Deposition”, Japanese Journal of Applied Physics, Vol. 35, pp. 189–191, 1996.

    Article  Google Scholar 

  24. Lee, S. C., Kim, C. K., Song, H. E., and Kim, Y. S., “Finite Element Analysis of Crystalline Silicon Solar Cell in Screen Printing Process by using Taguchi Method,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 4, pp. 635–642, 2013.

    Article  Google Scholar 

  25. Hwang, D. S., Lee, C. H., Lee, J. O., Jeon, C. Y., Lim, Y. B., and et al.,“Influences of Deposition Parameters on Micro-Crystalline Silicon Single Junction Cell Efficiency in Large-Area and High Rate Deposition,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1113–1116, 2012.

    Article  Google Scholar 

  26. Seo, H., Son, M. K., Park, S., Kim, H. J., and Shiratani, M., “The Blocking Effect of Charge Recombination by Sputtered and Acid-Treated ZnO Thin Film in Dye-Sensitized Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 248, pp. 50–54, 2012.

    Article  Google Scholar 

  27. Seo, H., Son, M. K., Kim, J. K., Choi, J., Choi, S., and et al., “Analysis of Current Loss from a Series-Parallel Combination of Dye-Sensitized Solar Cells using Electrochemical Impedance Spectroscopy,” Photonics and Nanostructures — Fundamentals and Applications, Vol. 10, No. 4, pp. 568–574, 2012.

    Article  Google Scholar 

  28. Han, L., Koide, N., Chiba, Y., Islam, A., and Mitate, T., “Modeling of an Equivalent Circuit for Dye-Sensitized Solar Cells: Improvement of Efficiency of Dye-Sensitized Solar Cells by Reducing Internal Resistance,” Comptes Rendus Chimie, Vol. 9, No. 5–6, pp. 645–651, 2006.

    Article  Google Scholar 

  29. Koide, N., Islam, A., Chiba, Y., and Han, L., “Improvement of Efficiency of Dye-Sensitized Solar Cells based on Analysis of Equivalent Circuit,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 182, No. 3, pp. 296–305, 2006.

    Article  Google Scholar 

  30. Han, L., Koide, N., Chiba, Y., Islam, A., Komiya, R., and et al., “Improvement of Efficiency of Dye-Sensitized Solar Cells by Reduction of Internal Resistance,” Applied Physics Letters, Vol. 86, No. 21, pp. 213501–213503, 2005.

    Article  Google Scholar 

  31. Seo, H., Son, M. K., Kim, H. J., and Shiratani, M., “Improvement on the Long-Term Stability of Dye-Sensitized Solar Module by Structural Alternation,” Japanese Journal of Applied Physics, Vol. 51, No. 10, pp. 10NE21, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunwoong Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, H., Ichida, D., Uchida, G. et al. Analysis on the photovoltaic property of Si quantum dot-sensitized solar cells. Int. J. Precis. Eng. Manuf. 15, 339–343 (2014). https://doi.org/10.1007/s12541-014-0343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0343-8

Keywords

Navigation