Skip to main content
Log in

Electro-active polymer actuator based on PVDF with bacterial cellulose nano-whiskers (BCNW) via electrospinning method

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Hybrid electro-active polymer actuator using poly(vinylidene fluoride)(PVDF) membranes enhanced with bacterial cellulose nanowhiskers (BCNW) are developed through an electrospinning method and hence characterized. PVDF is dissolved in DMF and acetone solvent to prepare the PVDF solution for the electrospinning. Nanowhiskers of bacterial cellulose are extracted by hydrolysis using sulfonic acid. PVDF-BCNW composite membranes with porous structure are prepared via an electrospinning method according to the BCNW contents. The crystallinity of the PVDF-BCNW composites through the XRD and DSC analysis are decreased as 50.2% and 43.7%, considerably, meanwhile, the electrolyte holding capacity of the PVDF-BCNW composite is increased as 760%, significantly. The actuating performance is also enhanced significantly as ±3.4 mm and 4.5 mm for the sinusoidal and step inputs. Electro active actuators based on the PVDF-BCNW composite produced by dipping and drying method showes significantly improved displacement because of the synergistic effect of ion migration and electrochemical doping process when the voltage is applied. A novel PVDF-BCNW actuators are useful for items such as biomimetic robots and other diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar-Cohen, Y., “Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges,” SPIE, 2nd Ed., http://ebooks.spiedigitallibrary.org/content.aspx?bookid=146&sectionid=31570681.html (Accessed 16 JAN 2014)

    Google Scholar 

  2. Osada, Y., Okuzaki, H., and Hori, H., “A Polymer Gel with Electrically Driven Motility,” Nature, Vol. 355, No. 6357, pp. 242–244, 1992.

    Article  Google Scholar 

  3. Lughmani, W. A., Jho, J. Y., Lee, J. Y., and Rhee, K., “Modeling of Bending Behavior of IPMC Beams using Concentrated Ion Boundary Layer,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 131–139, 2009.

    Article  Google Scholar 

  4. Smela, E., “Conjugated Polymer Actuators for Biomedical Applications,” Advanced Materials, Vol. 15, No. 6, pp. 481–494, 2003.

    Article  Google Scholar 

  5. Nguyen, C. H., Alici, G., and Wallace, G. G., “Modelling Trilayer Conjugated Polymer Actuators for their Sensorless Position Control,” Sensors and Actuators A: Physical, Vol. 185, pp. 82–91, 2012.

    Article  Google Scholar 

  6. Yun, S., Kim, J., and Lee, K. S., “Evaluation of Cellulose Electro-Active Paper Made by Tape Casting and Zone Stretching Methods,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 6, pp. 987–990, 2010.

    Article  Google Scholar 

  7. Pelrine, R., Kornbluh, R., Pei, Q., and Joseph, J., “High-Speed Electrically Actuated Elastomers with Strain Greater than 100%,” Science, Vol. 287, No. 5454, pp. 836–839, 2000.

    Article  Google Scholar 

  8. Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., and et al., “Carbon Nanotube Actuators,” Science, Vol. 284, No. 5418, pp. 1340–1344, 1999.

    Article  Google Scholar 

  9. Cho, K. J., Koh, J. S., Kim, S., Chu, W. S., Hong, Y., and Ahn, S. H., “Review of Manufacturing Processes for Soft Biomimetic Robots,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 171–181, 2009.

    Article  Google Scholar 

  10. Kim, M. S., Chu, W. S., Lee, J. H., Kim, Y. M., and Ahn, S. H., “Manufacturing of Inchworm Robot using Shape Memory Alloy (SMA) Embedded Composite Structure,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 3, pp. 565–568, 2011.

    Article  Google Scholar 

  11. Spinks, G. M., Alici, G., McGovern, S., Xi, B., and Wallace, G. G., “Conjugated Polymer Actuators: Fundamentals,” Biomedical Applications of Electroactive Polymer Actuators, Vol. 195–227, 2009.

  12. Martínez-Sanz, M., Lopez-Rubio, A., and Lagaron, J. M., “Optimization of the Nanofabrication by Acid Hydrolysis of Bacterial Cellulose Nanowhiskers,” Carbohydrate Polymers, Vol. 85, No. 1, pp. 228–236, 2011.

    Article  Google Scholar 

  13. Jeon, J. H., Oh, I. K., Kee, C. D., and Kim, S. J., “Bacterial Cellulose Actuator with Electrically Driven Bending Deformation in Hydrated Condition,” Sensors and Actuators B: Chemical, Vol. 146, No. 1, pp. 307–313, 2010.

    Article  Google Scholar 

  14. Eichhorn, S. J., “Cellulose Nanowhiskers: Promising Materials for Advanced Applications,” Soft Matter, Vol. 7, No. 2, pp. 303–315, 2011.

    Article  Google Scholar 

  15. Huang, J., Liu, L., and Yao, J., “Electrospinning of Bombyx Mori Silk Fibroin Nanofiber Mats Reinforced by Cellulose Nanowhiskers,” Fibers and Polymers, Vol. 12, No. 8, pp. 1002–1006, 2011.

    Article  Google Scholar 

  16. Park, W. I., Kang, M., Kim, H. S., and Jin, H. J., “Electrospinning of Poly (Ethylene Oxide) with Bacterial Cellulose Whiskers,” Wiley Online Library, Vol. 249–250, No. 1, pp. 289–294, 2007.

    Google Scholar 

  17. Martínez-Sanz, M., Olsson, R. T., Lopez-Rubio, A., and Lagaron, J. M., “Development of Bacterial Cellulose Nanowhiskers Reinforced EVOH Composites by Electrospinning,” Journal of Applied Polymer Science, Vol. 124, No. 2, pp. 1398–1408, 2012.

    Article  Google Scholar 

  18. Madden, P. G. A., Madden, J. D. W., Anquetil, P. A., Vandesteeg, N. A., and Hunter, I. W., “The Relation of Conducting Polymer Actuator Material Properties To Performance,” Oceanic Engineering, IEEE Journal of, Vol. 29, No. 3, pp. 696–705, 2004.

    Article  Google Scholar 

  19. Temmer, R., Must, I., Kaasik, F., Aabloo, A., and Tamm, T. “Combined Chemical and Electrochemical Synthesis Methods for Metal-Free Polypyrrole Actuators,” Sens. Actuators, B, Vol. 166, pp. 411–418, 2012.

    Article  Google Scholar 

  20. Terasawa, N., Mukai, K., Yamato, K., and Asaka, K., “Superior Performance of Manganese Oxide/Multi-Walled Carbon Nanotubes Polymer Actuator over Ruthenium Oxide/Multi-Walled Carbon Nanotubes and Single-Walled Carbon Nanotubes,” Sensors and Actuators B: Chemical, Vol. 171–172, pp. 595–601, 2012.

    Article  Google Scholar 

  21. Ding, J., Zhou, D., Spinks, G., Wallace, G., Forsyth, S., Forsyth, M., and MacFarlane, D., “Use of Ionic Liquids as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers,” Chemistry of Materials, Vol. 15, No. 12, pp. 2392–2398, 2003.

    Article  Google Scholar 

  22. Lu, W., Fadeev, A. G., Qi, B., Smela, E., Mattes, B. R., and et al., “Use of Ionic Liquids for p-Conjugated Polymer Electrochemical Devices,” Science, Vol. 297, No. 5583, pp. 983–987, 2002.

    Article  Google Scholar 

  23. Fahma, F., Iwamoto, S., Hori, N., Iwata, T., and Takemura, A., “Effect of Pre-Acid-Hydrolysis Treatment on Morphology and Properties of Cellulose Nanowhiskers from Coconut Husk,” Cellulose, Vol. 18, No. 2, pp. 443–450, 2011.

    Article  Google Scholar 

  24. Gaihre, B., Alici, G., Spinks, G. M., and Cairney, J. M., “Effect of Electrolyte Storage Layer on Performance of PPy-PVDF-PPy Microactuators,” Sensors and Actuators B: Chemical, Vol. 155, No. 2, pp. 810–816, 2011.

    Article  Google Scholar 

  25. Martínez-Sanz, M., Olsson, R. T., Lopez-Rubio, A., and Lagaron, J. M., “Development of Electrospun EVOH Fibres Reinforced with Bacterial Cellulose Nanowhiskers. Part I: Characterization and Method Optimization,” Cellulose, Vol. 18, No. 2, pp. 335–347, 2011.

    Article  Google Scholar 

  26. Kim, S. S., Jeon, J. H., Kee, C. D., and Oh, I. K., “Electro-Active Hybrid Actuators based on Freeze-Dried Bacterial Cellulose and PEDOT: PSS,” Smart Materials and Structures, Vol. 22, No. 8, pp. 085026, 2013.

    Article  Google Scholar 

  27. Fang, Y., Tan, X., and Alici, G., “Redox Level-Dependent Impedance Model for Conjugated Polymer Actuators,” Sensors and Actuators B: Chemical, Vol. 132, No. 1, pp. 182–190, 2008.

    Article  Google Scholar 

  28. Pickup, P. G., “Alternating Current Impedance Study of a Polypyrrole-Based Anion-Exchange Polymer,” J. Chem. Soc., Faraday Trans., Vol. 86, No. 21, pp. 3631–3636, 1990.

    Article  Google Scholar 

  29. Kuang, X., Q. Gao, and H. Zhu, “Effect of Calcination Temperature of TiO2 on the Crystallinity and the Permittivity of PVDFTrFE/TiO2 Composites,” Journal of Applied Polymer Science, Vol. 129, No. 1, pp. 296–300, 2012.

    Article  Google Scholar 

  30. Huang, S., Yee, W. A., Tjiu, W. C., Liu, Y., Kotaki, M., and et al., “Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes: Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures,” Langmuir, Vol. 24, No. 23, pp. 13621–13626, 2008.

    Article  Google Scholar 

  31. Chen, Y., Liu, C., Chang, P. R., Cao, X., and Anderson, D. P., “Bionanocomposites based on Pea Starch and Cellulose Nanowhiskers Hydrolyzed from Pea Hull Fibre: Effect of Hydrolysis Time,” Carbohydrate Polymers, Vol. 76, No. 4, pp. 607–615, 2009.

    Article  Google Scholar 

  32. Li, Z., Su, G., Gao, D., Wang, X., and Li, X., “Effect of Al2O3 Nanoparticles on the Electrochemical Characteristics of P (VDFHFP)-based Polymer Electrolyte,” Electrochimica acta, Vol. 49, No. 26, pp. 4633–4639, 2004.

    Article  Google Scholar 

  33. He, L., Xu, Q., Hua, C., and Song, R., “Effect of MultiWalled Carbon Nanotubes on Crystallization, Thermal, and Mechanical Properties of Poly (Vinylidene Fluoride),” Polymer Composites, Vol. 31, No. 5, pp. 921–927, 2010.

    Google Scholar 

  34. Jeon, J. H., Oh, I. K., Kee, C. D., and Kim, S. J., “Bacterial Cellulose Actuator with Electrically Driven Bending Deformation in Hydrated Condition,” Sensors and Actuators B: Chemical, Vol. 146, No. 1, pp. 307–313, 2010.

    Article  Google Scholar 

  35. Thinh, N. T., Yang, Y. S., and Oh, I. K., “Adaptive Neuro-Fuzzy Control of Ionic Polymer Metal Composite Actuators,” Smart Materials and Structures, Vol. 18, No. 6, pp. 065016, 2009.

    Article  Google Scholar 

  36. Li, J., Vadahanambi, S., Kee, C. D., and Oh, I. K., “Electrospun Fullerenol-Cellulose Biocompatible Actuators,” Biomacromolecules, Vol. 12, No. 6, pp. 2048–2054, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Doo Kee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SS., Kee, CD. Electro-active polymer actuator based on PVDF with bacterial cellulose nano-whiskers (BCNW) via electrospinning method. Int. J. Precis. Eng. Manuf. 15, 315–321 (2014). https://doi.org/10.1007/s12541-014-0340-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0340-y

Keywords

Navigation