Skip to main content
Log in

3D scaffold with PCL combined biomedical ceramic materials for bone tissue regeneration

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Three-dimensional porous biodegradable polymer scaffolds have been widely used for tissue engineering of bone repair or regeneration. The primary function of scaffolds is to provide structure support for the cells adhesion and proliferation. This study selects the Poly-ɛ-caprolactone (PCL) as material, NaCl mixed with hydroxyapatite (HA) or nano-aluminum oxide (nAl2O3) for porous scaffold. This study uses the solvent casting/particulate leaching method to fabricate the porous scaffold. The authors discuss the compression mechanical properties, physical properties (porosity, moisture content, contact angle) of a pure PCL, PCL/mHA, PCL/nHA and PCL/nAl2O3 scaffolds. In vitro cell culture is used for osteoblast cell (MG63) and the microculture tetrazolium test (MTT) is undertaken in the scaffold. The scaffolds are implanted to the femur of rats and histological examination is attempted after 2 weeks. The experimental results indicate that HA and nAl2O3 can improve the hydrophilic property. In conclusion, the PCL/nHA scaffold exhibits splendid in vivo biocompatibility and osteogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fabbri, P., Bondioli, F., Messori, M., Bartoli, C., Dinucci, D., and Chiellini, F., “Porous Scaffolds of Polycaprolactone Reinforced with in situ Generated Hydroxyapatite for Bone Tissue Engineering,” Journal of Materials Science: Materials in Medicine, Vol. 21, No. 1, pp. 343–351, 2010.

    Article  Google Scholar 

  2. Causa, F., Netti, P. A., Ambrosio, L., Ciapetti, G., Baldini, N., Pagani, S., Martini, D., and Giunti, A., “Poly-caprolactone/hydroxyapatite Composites for Bone Regeneration: In vitro Characterization and Human Osteoblast Response,” Journal of Biomedical Materials Research Part A, Vol. 76A, No. 1, pp. 151–162, 2006.

    Article  Google Scholar 

  3. Kim, J., Lim, D., Kim, Y. H., Koh, Y. H., Lee, M. H., and Han, I. et al., “A Comparative Study of the Physical and Mechanical Properties of Porous Hydroxyapatite Scaffolds Fabricated by Solid Freeform Fabrication and Polymer Replication Method,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 695–701, 2011.

    Article  Google Scholar 

  4. Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., Langer, R., and Winslow, D. N. et al., “Preparation and Characterization of Poly (L-lactic acid) Foams,” Polymer, Vol. 35, No. 5, pp. 1068–1077, 1994.

    Article  Google Scholar 

  5. Oh, S. H., Park, I. K., Kim, J. M., and Lee, J. H., “In Vitro and in Vivo Characteristics of PCL Scaffolds with Pore Size Gradient Fabricated by a Centrifugation Method,” Biomaterials, Vol. 28, No. 9, pp. 1664–1671, 2007.

    Article  Google Scholar 

  6. Sa, M. W. and Kim, J. Y., “Effect of Various Blending Ratios on the Cell Characteristics of PCL and PLGA Scaffolds Fabricated by Polymer Deposition System,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 4, pp. 649–655, 2013.

    Article  Google Scholar 

  7. Ang, K. C., Leong, K. F., Chua, C. K., and Chandrasekaran, M., “Compressive Properties and Degradability of Poly(ɛ-caprolatone)/ Hydroxyapatite Composites under Accelerated Hydrolytic Degradation,” Journal of Biomedical Materials Research Part A, Vol. 80A, No. 3, pp. 655–660, 2007.

    Article  Google Scholar 

  8. Yu, H., Matthew, H. W., Wooley, P. H., and Yang, S. Y., “Effect of Porosity and Pore Size on Microstructures and Mechanical Properties of Poly-ɛ-caprolactone-hydroxyapatite Composites,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 86B, No. 2, pp. 541–547, 2008.

    Article  Google Scholar 

  9. Shor, L., Guceri, S., Wen, X., Gandhi, M., and Sun, W., “Fabrication of Three-dimensional Polycaprolactone/hydroxyapatite Tissue Scaffolds and Osteoblast-scaffold Interactions in vitro,” Biomaterials, Vol. 28, No. 35, pp. 5291–5297, 2007.

    Article  Google Scholar 

  10. Kim, S. E., Yun, H. S., Hyun, Y. T., Shin, J. W., and Song, J. J., “Nanohydroxyapatite/ poly ɛ-caprolactone Composite 3D Scaffolds for Mastoid Obliteration,” Journal of Physics, Vol. 165, No. 1, Paper No. 012083, 2009.

    Google Scholar 

  11. Hong, D., Lai, Z., Fu, T. S., Tsai, T. T., Chu, I. M., and Lai, P. L., “The Influences of Polycaprolactone-grafted Nanoparticles on the Properties of Polycaprolactone Composites with Enhanced Osteoconductivity,” Composites Science and Technology, Vol. 83, pp. 64–71, 2013.

    Article  Google Scholar 

  12. Yang, J., Shi, G., Bei, J., Wang, S., Cao, Y., and Shang, Q. et al., “Fabrication and Surface Modification of Macroporous Poly(Llactic acid) and Poly(L-lactic-co-glycolic acid) (70/30) Cell Scaffolds for Human Skin Fibroblast Cell Culture,” Journal of Biomedical Materials Research, Vol. 62, No. 3, pp. 438–446, 2002.

    Article  Google Scholar 

  13. Heo, S. J., Kim, S. E., Wei, J., Hyun, Y. T., Yun, H. S., and Kim, D. H. et al., “Fabrication and Characterization of Novel Nano- and Micro-HA/PCL Composite Scaffolds using a Modified Rapid Prototyping Process,” Journal of Biomedical Materials Research Part A, Vol. 89A, No. 1, pp. 108–116, 2009.

    Google Scholar 

  14. Lien, S. M., Ko, L. Y., and Huang, T. J., “Effect of Pore Size on ECM Secretion and Cell Growth in Gelatin Scaffold for Articular Cartilage Tissue Engineering,” Acta Biomaterialia, Vol. 5, No. 2, pp. 670–679, 2009.

    Article  Google Scholar 

  15. Huang, F. L., Wang, Q. Q., Wei, Q. F., Gao, W. D., Shou, H. Y., and Jiang, S. D., “Dynamic Wettability and Contact Angles of Poly (vinylidene fluoride) Nanofiber Membranes Grafted with Acrylic Acid,” eXPRESS Polymer Letter, Vol. 4, pp. 551–558, 2010.

    Article  Google Scholar 

  16. Li, Y., Cheah, C. M., Chang, H., Loh, L., and Kum, A., “Preparation and Characterization of Bioactive Composites of PCL/bioactive Fillers,” International Journal of Modern Physics B, Vol. 24, No. 1-2, pp. 128–135, 2010.

    Article  Google Scholar 

  17. Loher, S., Reboul, V., Brunner, T. J., Simonet, M., and Dora, C., Neuenschwander, P., and Stark W. J., “Improved Degradation and Bioactivity of Amorphous Aerosol Derived Tricalcium Phosphate Nanoparticles in Poly(Lactide-Co-Glycolide),” Nanotechnology, Vol. 17, No. 8, pp. 2054–2061, 2006.

    Article  Google Scholar 

  18. Vollenweider, M., Brunner, T. J., Knecht, S., Grass, R. N., Zehnder, M., and Imfeld, T. et al., “Remineralization of Human Dentin Using Ultrafine Bioactive Glass Particles,” Acta Biomaterialia, Vol. 3, No. 6, pp. 936–943, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Kang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chern, MJ., Yang, LY., Shen, YK. et al. 3D scaffold with PCL combined biomedical ceramic materials for bone tissue regeneration. Int. J. Precis. Eng. Manuf. 14, 2201–2207 (2013). https://doi.org/10.1007/s12541-013-0298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0298-1

Keywords

Navigation