Skip to main content
Log in

Abstract

Soft robotics, a concept contrary to conventional “hard” robotics, is a robot design methodology that uses soft materials inspired by nature. In contrast to a hard robot, a soft robot is composed of soft and flexible materials that blur the distinction between an actuator and a structure, which leads to unique characteristics that cannot be found in a conventional hard robot. This paper presents our approach to the issues that arise when the concept of soft robotics is applied to a wheeled robot. The compliance of the wheel diversifies its potential movement and allows for a high degree of adaptability to the environment. Although the wheel radius of the robot is 50 mm, it can pass through a 30 mm gap and climb a 45 mm step. While soft robotics displays properties whose performance can be challenging to implement, it also enables us to create complex forms of movement in a cheaper and simpler way. We expect that this kind of approach can provide a new design method for a deformable wheel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trivedi, D., Rahn, C. D., Kier, W. M., and Walker, I. D., “Soft robotics: Biological inspiration, state of the art, and future research,” Applied Bionics and Biomechanics, Vol. 5, No. 3, pp. 99–117, 2008.

    Article  Google Scholar 

  2. Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M., and Whitesides, G. M., “Multigait soft robot,” Proceedings of the National Academy of Sciences, Vol. 108, No. 51, pp. 20400–20403, 2011.

    Article  Google Scholar 

  3. Seok, S., Onal, C. D., Cho, K. J., Wood, R. J., Rus, D., and Kim, S., “Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators,” IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 5, pp. 1485–1497, 2013.

    Article  Google Scholar 

  4. Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., and Laschi, C., “Design concept and validation of a robotic arm inspired by the octopus,” Materials Science and Engineering: C, Vol. 31, No. 6, pp. 1230–1239, 2011.

    Article  Google Scholar 

  5. Lin, H. T., Leisk, G. G., and Trimmer, B., “GoQBot: a caterpillarinspired soft-bodied rolling robot,” Bioinspiration and Biomimetics, Vol. 6, No. 2, pp. 026007, 2011.

    Article  Google Scholar 

  6. Kim, S., Koh, J., Cho, M., and Cho, K., “Design & analysis a flytrap robot using bi-stable composite,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 215–220, 2011.

    Google Scholar 

  7. Huh, T., Park, Y. J., and Cho, K. J., “Design and analysis of a stiffness adjustable structure using an endoskeleton,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1255–1258, 2012.

    Article  Google Scholar 

  8. Chu, W. S., Lee, K. T., Song, S. H., Han, M. W., Lee, J. Y., Kim, H. S., Kim, M. S., Park, Y. J., Cho, K. J., and Ahn, S. H., “Review of biomimetic underwater robots using smart actuators,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1281–1292, 2012.

    Article  Google Scholar 

  9. Cho, K. J., Koh, J. S., Kim, S., Chu, W. S., Hong, Y., and Ahn, S. H., “Review of manufacturing processes for soft biomimetic robots,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 171–181, 2009.

    Article  Google Scholar 

  10. Correll, N., Onal, C. D., Liang, H., Schoenfeld, E., and Rus, D., “Soft Autonomous Materials-Using Active Elasticity and Embedded Distributed Computation,” Proc. of 12th International Symposium on Experimental Robotics, 2010.

    Google Scholar 

  11. Torres-Jara, E., Gilpin, K., Karges, J., Wood, R. J., and Rus, D., “Composable flexible small actuators built from thin shape memory alloy sheets,” IEEE Robotics and Automation Magazine.

  12. Sugiyama, Y. and Hirai, S., “Crawling and Jumping by a Deformable Robot,” The International Journal of Robotics Research, Vol. 25, No. 5–6, pp. 603–620, 2006.

    Article  Google Scholar 

  13. Koh, J., Lee, D., Kim, S., and Cho, K., “Deformable soft wheel robot using hybrid actuation,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 3869–3870, 2012.

    Google Scholar 

  14. Trimmer, B. A., Takesian, A., Sweet, B., Rogers, C. B., Hake, D. C., and Rogers, D. J., “Caterpillar locomotion: A new model for softbodied climbing and burrowing robots,” Proc. of 7th Int. Symp. Technol. Mine Problem, pp. 1–10, 2006.

    Google Scholar 

  15. Menciassi, A., Accoto, D., Gorini, S., and Dario, P., “Development of a biomimetic miniature robotic crawler,” Autonomous Robots, Vol. 21, No. 2, pp. 155–163, 2006.

    Article  Google Scholar 

  16. Kim, S., Hawkes, E., Cho, K., Jolda, M., Foley, J., and Wood, R., “Micro artificial muscle fiber using NiTi spring for soft robotics,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2228–2234, 2009.

    Google Scholar 

  17. Kim, S. and Cho, K., “Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators,” IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 2, pp. 419–429, 2013.

    Article  Google Scholar 

  18. Noh, M., Kim, S., An, S., Koh, J., and Cho, K., “Flea-Inspired Catapult Mechanism for Miniature Jumping Robots,” IEEE Transactions on Robotics, Vol. 28, No. 5, pp. 1007–1018, 2012.

    Article  Google Scholar 

  19. Jung, G., Koh, J., and Cho, K., “Meso-scale compliant gripper inspired by caterpillar’s proleg,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 1831–1836, 2011.

    Google Scholar 

  20. Maeda, S., Abe, K., Yamamoto, K., Tohyama, O., and Ito, H., “Active endoscope with SMA (Shape Memory Alloy) coil springs,” Proceedings of IEEE the 9th Annual Ineternational Workshop on An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, pp. 290–295, 1996.

    Google Scholar 

  21. Cho, K. J., Hawkes, E., Quinn, C., and Wood, R. J., “Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 706–711, 2008.

    Google Scholar 

  22. Otsuka, K. and Wayman, C. M., “Shape Memory Materials,” Cambridge University Press, 1999.

    Google Scholar 

  23. Brinson, L. C., “One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable,” Journal of Intelligent Material Systems and Structures, Vol. 4, No. 2, pp. 229–242, 1993.

    Article  Google Scholar 

  24. Shigley, J. E., Mischke, C. R., and Budynas, R. G., “Mechanical Engineering Design,” McGraw-Hill, 2004.

    Google Scholar 

  25. An, S. M., Ryu, J., Cho, M., and Cho, K. J., “Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model,” Smart Materials and Structures, Vol. 21, No. 5, pp. 055009, 2012.

    Article  Google Scholar 

  26. Koh, J. S., Lee, D. Y., and Cho, K. J., “Design of the shape memory alloy coil spring actuator for the soft deformable wheel robot,” Proceedings of 9th International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 641–642, 2012.

    Google Scholar 

  27. Koh, K., Lee, D., Kim, S., and Cho, K., “Design and Fabrication of Composite Sheet Spoke for Torque Transmission of Small Scale Morphing Wheel,” Proc. of KSPE Spring Conference, pp. 561–562, 2012.

    Google Scholar 

  28. Wood, R. J., Avadhanula, S., Sahai, R., Steltz, E., and Fearing, R. S., “Microrobot design using fiber reinforced composites,” Journal of Mechanical Design, Vol. 130, No. 5, pp. 52–304, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Jin Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DY., Koh, JS., Kim, JS. et al. Deformable-wheel robot based on soft material. Int. J. Precis. Eng. Manuf. 14, 1439–1445 (2013). https://doi.org/10.1007/s12541-013-0194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0194-8

Keywords

Navigation