Skip to main content
Log in

Softer is Harder: What Differentiates Soft Robotics from Hard Robotics?

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This paper reports on what differentiates the field of soft (i.e. soft-bodied) robotics from the conventional hard (i.e. rigid-bodied) robotics. The main difference centres on seamlessly combining the actuation, sensing, motion transmission and conversion mechanism elements, electronics and power source into a continuum body that ideally holds the properties of morphological computation and programmable compliance (i.e. softness). Another difference is about the materials they are made of. While the hard robots are made of rigid materials such as metals and hard plastics with a bulk elastic modulus of as low as 1 GPa, the monolithic soft robots should be fabricated from soft and hard materials or from a strategic combination of them with a maximum elasticity modulus of 1 GPa. Soft smart materials with programmable mechanical, electrical and rheological properties, and conformable to additive manufacturing based on 3D printing are essential to realise soft robots. Selecting the actuation concept and its power source, which is the first and most important step in establishing a robot, determines the size, weight, performance of the soft robot, the type of sensors and their location, control algorithm, power requirement and its associated flexible and stretchable electronics. This paper outlines how crucial the soft materials are in realising the actuation concept, which can be inspired from animal and plant movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Rus and M. T. Tolley, Nature, 521, no. 7553, 467–475, (2015).

    Article  CAS  Google Scholar 

  2. S. Kim, C. Laschi, and B. Trimmer, Trends in Biotechnology, 31:5, 287–294, (2013).

    Article  CAS  Google Scholar 

  3. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwoediauer, Adv. Mater. 26, 149–162, (2014).

    Article  CAS  Google Scholar 

  4. G. Alici, Editorial for Special Issue, http://www.mdpi.com/journal/robotics/special_issues/soft_robotic, accessed on May 20, 2016.

  5. G. S. Chirikjian and J. W. Burdick, IEEE Transactions on Robotics and Automation, 11:6 , 781 – 793, (2005).

    Article  Google Scholar 

  6. R. Kang, D. T. Branson, T. Zheng, E. Guglielmino, and D. G. Caldwell, Bioinspiration & biomimetics, 8:3, p. 036008, (2013).

    Article  Google Scholar 

  7. R. J. Webster and B. A. Jones, The International Journal of Robotics Research, 29:13, 1661–1683, (2010).

    Article  Google Scholar 

  8. R. Pfeifer, M. Lungarella, and F. Iida, Communications of ACM, 55:11, 76 – 87, (2012).

    Article  Google Scholar 

  9. H. Hauser, A. J. Ijspeert, R. M. Fuchslin, R. Pfeifer, and W. Mass, Biological Cybernetics, 105, 355 –370, (2011).

    Article  Google Scholar 

  10. R. Mutlu, G. Alici, M. in het Panhuis, and G.M, Spinks, Soft Robotics, 3:3, 120 –133, (2016).

    Article  Google Scholar 

  11. Huber, J. E., N. A. Fleck and M. F. Ashby, The Royal Society: 2185, (1997).

  12. T. V. Minh, T. Tjahjowidodo, H. Ramon, and H. V. Brussel, IEEE/ASME Transactions on Mechatronics, 16:1, 177–186, (2011).

    Article  Google Scholar 

  13. ISO 8373:2012, Robots and robotic devices — Vocabulary, https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en, accessed on June 7, 2017.

  14. C. D. Onal, and D. Rus, Bioinspiration & Biomimetics, 8:2, 026003, 2013.

    Article  Google Scholar 

  15. A. Albu-Schaffer, O. Eiberger, M. Grebenstein, S.Haddadin, C. Ott, T. Wimbock, S. Wolf and G. Hirzinger, IEEE Robot. Autom. Mag. 15, 20–30, (2008).

    Article  Google Scholar 

  16. R. H. Ewoldt, Soft Robotics, 12–20, (2013).

  17. G. Alici, R. Mutlu, D.Melling, E. W. H. Jager and K.Kaneto, In Electromechanically Active Polymers: A Concise Reference, edited by F. Carpi, Springer International Publishing, (2016).

  18. C. Majidi, Soft Robotics, 5–11, (2013).

  19. M. A. McEvoy and N. Correll, Science 347, DOI: 10.1126/science.1261689, (2015).

  20. K. C. Galloway, K. P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R. J. Wood, and D. F. Gruber, Soft Robotics, 3, 23–33, (2016).

    Article  Google Scholar 

  21. B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh and G. M. Whitesides, Advanced Functional Materials, 24, 2163–2170, (2014).

    Article  CAS  Google Scholar 

  22. K. Suzumori, S. Iikura, and H. Tanaka, Robotics and Automation, Proceedings., 1991 IEEE International Conference on, 1622–1627, (1991)

  23. S. Wakimoto, K. Suzumori, and K. Ogura, Advanced Robotics 25, 1311–1330, (2011).

    Article  Google Scholar 

  24. R. F. Shepherd, A. A. Stokes, J. Freake, J. Barber, P. W. Snyder, A. D. Mazzeo, L. Cademartiri, S. A. Morin, and G, M. Whitesides, Angewandte Chemie International Edition, 52, 2892–2896, (2013).

    Article  CAS  Google Scholar 

  25. R. Mutlu, G. Alici, and W. Li, IEEE/ASME Transactions on Mechatronics, 21, 1467–1478, (2016).

    Article  Google Scholar 

  26. C. H. Nguyen, G. Alici, and R. Mutlu, ASME Journal of Mechanical Design, 136, 061009-061009-9, (2014).

    Article  Google Scholar 

  27. H. Yuk, S. Lin, C. Ma, M. Takaffoli, N. X. Fang, and X. Zhao, Nature Communications, 8, 14230, 02/01/online. (2017).

    Article  CAS  Google Scholar 

  28. H. Jin, E. Dong, G. Alici, S. Mao, X. Min, C. Liu, K. H. Low, and J. Yang, Bioinspiration & Biomimetics,11, 056012, (2016).

    Article  Google Scholar 

  29. H.K. Yap, H.Y. Ng, C.-H. Yeow, Soft Robotics 3(3), 144–158, (2016).

    Article  Google Scholar 

  30. G. Agarwal, N. Besuchet, B. Audergon and J. Paik, Sci. Rep. 6, 34224; doi: 10.1038/srep34224 (2016).

    Article  CAS  Google Scholar 

  31. D. Yang, B. Mosadegh , A. Ainla , B. Lee , F. Khashai , Z. Suo , K. Bertoldi , and G. M. Whitesides, Advanced Materials, 27, 6323–6327, (2015).

    Article  CAS  Google Scholar 

  32. S. E. Bakarich, R. Gorkin, M. in het Panhuis and G. M. Spinks, Macromol Rapid Commun, 36:1211–1217, (2015).

    Article  CAS  Google Scholar 

  33. R. K, Katzschmann, A. D. Marchese, and D. Rus, In Proc. International Symposium on Experimental Robotics, (2014).

  34. G. Sumbre, G. Fiorito, T. Flash, and B. Hochner, Curr. Biol. 16, 767–772, 2006.

    Article  CAS  Google Scholar 

  35. C Zhang and C Rossi, Bioinspir. Biomim. 12 025005, (2017).

    Article  CAS  Google Scholar 

  36. R. J. Full, In The Handbook of Comparative Physiology, W Dantzler, ed., 853–930, Oxford University Press, Oxford (1997).

    Google Scholar 

  37. W. M. Kier and K. K. Smith, Zoological Journal of the Linnean Society, 83, 307–324, (1985).

    Article  Google Scholar 

  38. M. H. Dickinson, C. T. Farley, R. J. Full, M.A. R. Koehl, R. Cram and S. Lehman, Science, 288, I 00–106 (2000).

    Article  Google Scholar 

  39. Madden, J. D. W., Vandesteeg, N. A., Anquetil, P., Madden, P. G., Takshi, A., Pytel, R. Z., Lafontaine, S. R., Wieringa, P., and Hunter, I. W., IEEE J. Oceanic Eng, 29 (3), 7006–28 (2004)

    Google Scholar 

  40. B. Trimmer, Soft Robotics. 4:1, 1–2. https://doi.org/10.1089/soro.2017.29011.bat, (2017)

    Article  Google Scholar 

  41. A, Miriyev, K. Stack, K. and H. Lipson, Nat. Commun. 1–8, doi:10.1038/s41467-017-00685-3, (2017).

  42. Meijer, K., Y. Bar-Cohen, and R. J. Full, SPIE Press, 25–46, (2003).

  43. P. Polygerinos, N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal, K. Petersen, M. Cianchetti, M. T. Tolley and R. F. Shepherd, Advanced Engineering Materials, DOI: 10.1002/adem.201700016, (2017).

  44. G. Alici and R. W. Daniel, International Journal of Robotics and Automation, 11:2, 62--73, (1996).

    Google Scholar 

  45. F.L. Liu, G. Alici, B. Zhang, S. Beirne, and W. Li, Smart Materials and Structures, 24, 035015, (2015).

    Article  CAS  Google Scholar 

  46. G. Alici, and N. N. Huynh, IEEE/ASME Transactions on Mechatronics, 12, 1, 73 -- 84, (2007).

    Article  Google Scholar 

  47. B. Gaihre, G. Alici, G. M. Spinks, and J. M. Cairney, IEEE/ASME Journal of Microelectromechanical Systems, 21:3, 574 – 585, (2012).

    Article  CAS  Google Scholar 

  48. W. H. Li, Y. Zhou, and T. F. Tian, Rheol Acta, 49, 733–740, DOI 10.1007/s00397-010-0446-9, (2010).

    Article  CAS  Google Scholar 

  49. W.H. Li, H. Du and N.Q. Guo, Materials Science and Engineering A, 371, 9–15, (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gursel Alici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alici, G. Softer is Harder: What Differentiates Soft Robotics from Hard Robotics?. MRS Advances 3, 1557–1568 (2018). https://doi.org/10.1557/adv.2018.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.159

Navigation