Skip to main content
Log in

Model reference adaptive sliding mode control for three dimensional overhead cranes

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

An overhead crane transfers the payloads of various volumes and weights depending on the each operation case. The friction factors characterized by damped coefficients can be changed in connection with operating environment. This study develops an adaptive version of sliding mode controller for the overhead cranes without priori information of system parameters composed of cargo mass and damped aspects. The proposed controller simultaneously executes five duties consisted of tracking the trolley and bridge, hoisting the cargo, keeping the payload swings small during the transport process, and absolutely suppressing the cargo vibrations at destination of trolley and bridge. Both simulation and experiment results indicate that the adaptive robust controller asymptotically stabilizes all crane system responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sawodny, O., Aschemann, H., and Lahres, S., “An automated gantry crane as a large workspace robot,” Control Engineering Practice, Vol. 10, No. 12, pp. 1323–1338, 2002.

    Article  Google Scholar 

  2. Sakawa, Y. and Sano, H., “Nonlinear model and linear robust control of overhead traveling cranes,” Nonlinear Analysis, Theory, Methods and Applications, Vol. 30, No. 4, pp. 2197–2207, 1997.

    Article  MATH  Google Scholar 

  3. Lee, H. H., “A new motion-planning scheme for overhead cranes with high-speed hoisting,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 126, No. 2, pp. 359–364, 2004.

    Article  Google Scholar 

  4. Kim, C. S. and Hong, K. S., “Boundary control of container cranes from the perspective of controlling an axially moving string system,” International Journal of Control, Automation and Systems, Vol. 7, No. 3, pp. 437–445, 2009.

    Article  Google Scholar 

  5. Dongkyoung, C., “Nonlinear Tracking Control of 3-D Overhead Cranes Against the Initial Swing Angle and the Variation of Payload Weight,” IEEE Transactions on Control Systems Technology, Vol. 17, No. 4, pp. 876–883, 2009.

    Article  Google Scholar 

  6. Wang, Z. and Surgenor, B. W., “A problem with the LQ control of overhead cranes,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 128, No. 2, pp. 436–440, 2006.

    Article  Google Scholar 

  7. Sorensen, K. L., Singhose, W., and Dickerson, S., “A controller enabling precise positioning and sway reduction in bridge and gantry cranes,” Control Engineering Practice, Vol. 15, No. 7, pp. 825–837, 2007.

    Article  Google Scholar 

  8. Singhose, W., Kim, D., and Kenison, M., “Input shaping control of double-pendulum bridge crane oscillations,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 130, No. 3, pp. 2008.

  9. Chang, C. Y. and Chiang, K. H., “Fuzzy projection control law and its application to the overhead crane,” Mechatronics, Vol. 18, No. 10, pp. 607–615, 2008.

    Article  Google Scholar 

  10. Chen, Y. J., Wang, W. J., and Chang, C. L., “Guaranteed cost control for an overhead crane with practical constraints: Fuzzy descriptor system approach,” Engineering Applications of Artificial Intelligence, Vol. 22, No. 4–5, pp. 639–645, 2009.

    Article  Google Scholar 

  11. Suh, J. H., Lee, J. W., Lee, Y. J., and Lee, K. S., “Anti-sway position control of an automated transfer crane based on neural network predictive PID controller,” Journal of Mechanical Science and Technology, Vol. 19, No. 2, pp. 505–519, 2005.

    Article  Google Scholar 

  12. Yu, W., Moreno-Armendariz, M. A., and Rodriguez, F. O., “Stable adaptive compensation with fuzzy CMAC for an overhead crane,” Information Sciences, Vol. 181, No. 21, pp. 4895–4907, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, K., Coates, S., and Coverstone-Carroll, V., “Variable structure control applied to underactuated robots,” Robotica, Vol. 15, No. 3, pp. 313–318, 1997.

    Article  Google Scholar 

  14. Ashrafiuon, H. and Erwin, R. S., “Sliding mode control of underactuated multibody systems and its application to shape change control,” International Journal of Control, Vol. 81, No. 12, pp. 1849–1858, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  15. Sankaranarayanan, V. and Mahindrakar, A. D., “Control of a class of underactuated mechanical systems using sliding modes,” IEEE Transactions on Robotics, Vol. 25, No. 2, pp. 459–467, 2009.

    Article  Google Scholar 

  16. Karkoub, M. A. and Zribi, M., “Robust control schemes for an overhead crane,” Journal of Vibration and Control, Vol. 7, No. 3, pp. 395–416, 2001.

    Article  MATH  Google Scholar 

  17. Bartolini, G., Pisano, A., and Usai, E., “Second-order sliding-mode control of container cranes,” Automatica, Vol. 38, No. 10, pp. 1783–1790, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bartolini, G., Pisano, A., and Usai, E., “Output-feedback control of container cranes: A Comparative analysis,” Asian Journal of Control, Vol. 5, No. 4, pp. 578–593, 2003.

    Article  Google Scholar 

  19. Lee, H. H., Liang, Y., and Segura, D., “A Sliding-Mode Antiswing Trajectory Control for Overhead Cranes With High-Speed Load Hoisting,” Journal of Dynamic Systems, Measurement, and Control, Vol. 128, No. 4, pp. 842–845, 2006.

    Article  Google Scholar 

  20. Almutairi, N. B. and Zribi, M., “Sliding mode control of a three-dimensional overhead crane,” JVC/Journal of Vibration and Control, Vol. 15, No. 11, pp. 1679–1730, 2009.

    Article  MathSciNet  Google Scholar 

  21. Ngo, Q. H. and Hong, K. S., “Sliding-mode antisway control of an offshore container crane,” IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 2, pp. 201–209, 2012.

    Article  Google Scholar 

  22. Yang, J. H. and Yang, K. S., “Adaptive coupling control for overhead crane systems,” Mechatronics, Vol. 17, No. 2–3, pp. 143–152, 2007.

    Article  Google Scholar 

  23. Yang, J. and Shen, S., “Novel Approach for Adaptive Tracking Control of a 3-D Overhead Crane System,” Journal of Intelligent and Robotic Systems, Vol. 62, No. 1, pp. 59–80, 2011.

    Article  MATH  Google Scholar 

  24. Teo, C. S., Tan, K. K., Lim, S. Y., Huang, S., and Tay, E. B., “Dynamic modeling and adaptive control of a H-type gantry stage,” Mechatronics, Vol. 17, No. 7, pp. 361–367, 2007.

    Article  Google Scholar 

  25. Cho, H. C. and Lee, K. S., “Adaptive control and stability analysis of nonlinear crane systems with perturbation,” Journal of Mechanical Science and Technology, Vol. 22, No. 6, pp. 1091–1098, 2008.

    Article  Google Scholar 

  26. Ning, S., Yongchun, F., Yudong, Z., and Bojun, M., “A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes,” IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 1, pp. 166–173, 2012.

    Article  Google Scholar 

  27. Fang, Y., Ma, B., Wang, P., and Zhang, X., “A motion planning-based adaptive control method for an underactuated crane system,” IEEE Transactions on Control Systems Technology, Vol. 20, No. 1, pp. 241–248, 2012.

    Google Scholar 

  28. Omar, H. M. and Nayfeh, A. H., “Gain scheduling feedback control of tower cranes with friction compensation,” JVC/Journal of Vibration and Control, Vol. 10, No. 2, pp. 269–289, 2004.

    Article  Google Scholar 

  29. Corriga, G., Giua, A., and Usai, G., “An implicit gain-scheduling controller for cranes,” IEEE Transactions on Control Systems Technology, Vol. 6, No. 1, pp. 15–20, 1998.

    Article  Google Scholar 

  30. Giua, A., Sanna, M., and Seatzu, C., “Observer-Controller Design for Three Dimensional Overhead Cranes Using Time-Scaling,” Mathematical and Computer Modelling of Dynamical Systems, Vol. 7, No. 1, pp. 77–107, 2001.

    Article  MATH  Google Scholar 

  31. Mizumoto, I., Chen, T., Ohdaira, S., Kumon, M., and Iwai, Z., “Adaptive output feedback control of general MIMO systems using multirate sampling and its application to a cart-crane system,” Automatica, Vol. 43, No. 12, pp. 2077–2085, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  32. Ngo, Q. H., Hong, K. S., and Jung, I. H., “Adaptive control of an axially moving system,” Journal of Mechanical Science and Technology, Vol. 23, No. 11, pp. 3071–3078, 2010.

    Article  Google Scholar 

  33. Huang, Y. J., Kuo, T. C., and Chang, S. H., “Adaptive Sliding-Mode Control for Nonlinear Systems With Uncertain Parameters,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 38, No. 2, pp. 534–539, 2008.

    Article  Google Scholar 

  34. Su, C. Y. and Leung, T. P., “Sliding mode controller with bound estimation for robot manipulators,” IEEE Transactions on Robotics and Automation, Vol. 9, No. 2, pp. 208–214, 1993.

    Article  Google Scholar 

  35. Ngo, Q. H. and Hong, K. S., “Adaptive sliding mode control of container cranes,” IET Control Theory and Applications, Vol. 6, No. 5, pp. 662–668, 2012.

    Article  MathSciNet  Google Scholar 

  36. Liu, D., Yi, J., Zhao, D., and Wang, W., “Adaptive sliding mode fuzzy control for a two-dimensional overhead crane,” Mechatronics, Vol. 15, No. 5, pp. 505–522, 2005.

    Article  Google Scholar 

  37. Park, M. S., Chwa, D. K., and Hong, S. K., “Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding mode control,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 11, pp. 3972–3984, 2003.

    Article  Google Scholar 

  38. Slotine, J. J. E. and LI, W. A., “Applied Nonlinear Control,” Prentice Hall, 1991.

    Google Scholar 

  39. Le, T. A., Kim, G. H., Kim, M. Y., and Lee, S. G., “Partial feedback linearization control of overhead cranes with varying cable lengths,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 4, pp. 501–507, 2012.

    Article  Google Scholar 

  40. Tuan, L. A., Moon, S. C., Lee, W. G., and Lee, S. G., “Adaptive sliding mode control of overhead cranes with varying cable length,” Journal of Mechanical Science and Technology, Vol. 27, No. 3, pp. 885–893, 2013.

    Article  Google Scholar 

  41. Le, T. A., Dang, V.-H., Ko, D. H., An, T. N., and Lee, S.-G., “Nonlinear controls of a rotating tower crane in conjunction with trolley motion,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Vol. 227, No. 5, pp. 451–460, 2013.

    Article  Google Scholar 

  42. Le, A. T. and Lee, S. G., “Sliding Mode Controls of Double-Pendulum Crane Systems,” Journal of Mechanical Science and Technology, Nol. 27, No. 6, pp. 1863–1873, 2013.

    Google Scholar 

  43. Tuan, L. A., Kim, G. H., and Lee, S. G., “Partial Feedback Linearization Control of the three dimensional overhead crane,” IEEE Ineternational Conference on Automation Science and Engineering, pp. 1198–1203, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Geul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuan, L.A., Lee, SG., Nho, L.C. et al. Model reference adaptive sliding mode control for three dimensional overhead cranes. Int. J. Precis. Eng. Manuf. 14, 1329–1338 (2013). https://doi.org/10.1007/s12541-013-0180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0180-1

Keywords

Navigation