Skip to main content
Log in

Review of microwave assisted manufacturing technologies

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper reviews recent advancement of microwave (MW) assisted manufacturing technologies. Because MW energy interacts with materials in unique ways, MW assisted manufacturing technologies have the potential to develop entirely new or enhanced manufactured products and materials as well as new approaches for producing such materials. There have been various fields MW technologies have been applied: material processing of ceramics, polymers, metals, carbon nanotubes and composites; machining; synthesis of organic and inorganic compounds; waste remediation and environmental applications; solvent extraction from foods and bioproducts. This review introduces some fundamental knowledge of MW and current status of MW applications focusing on manufacturing technologies. Also, some suggestions for future research are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willert-Porada, M. (Ed.), “Advances in Microwave and Radio Frequency Processing,” Springer, 2006.

  2. Rao, K. J., Vaidhyanathan, B., Ganguli, M., and Ramakrishnan, P. A., “Synthesis of inorganic solids using microwaves,” Chem. Mater., Vol. 11, pp. 882–895, 1999.

    Article  Google Scholar 

  3. Binner, J. G. P. and Cross, T. E., “Applications for Microwave Heating in Ceramic Sintering: Challenges and Opportunities,” J. Hard Mater., Vol. 4, pp. 177–185, 1995.

    Google Scholar 

  4. Agrawal, D. K., “Microwave processing of ceramics,” Current Opinion in Solid State & Materials Science, Vol. 3, pp. 480–485, 1998.

    Article  Google Scholar 

  5. George, C. E., Lightsey, G. R., and Wehr, A. G., “Microwave Processing of Polymers and Biomass Materials,” Materials Research Society Proceedings, Vol. 124, pp. 189–194, 1988.

    Article  Google Scholar 

  6. Jacob, J., Chia, L. H. L., and Boey, F. Y. C., “Review-thermal and non-thermal interaction of microwave radiation with materials,” J. of Materials Science, Vol. 30, No. 21, pp. 5321–5327, 1995.

    Article  Google Scholar 

  7. Kelly, R. M. and Rowson, N. A., “Microwave reduction of oxidised ilmenite concentrates,” Minerals Engineering, Vol. 8, No. 11, pp. 1427–1438, 1995.

    Article  Google Scholar 

  8. Saremi-Yarahmadi, S., Vaidhyanathan, B., and Upul Wijayantha, K. G., “Microwave-assisted low temperature fabrication of nanostructured a-Fe2O3 electrodes for solar-driven hydrogen generation,” Int. J. of Hydrogen Energy, Vol. 35, pp. 10155–10165, 2010.

    Article  Google Scholar 

  9. Li, Y., Li, H., and Cao, R., “Facile fabrication of pure a-Fe2O3 nanoparticles via forced hydrolysis using microwave assisted esterification and their sensing property,” J. Am. Ceram. Soc., Vol. 92, pp. 2188–2191, 2009.

    Article  Google Scholar 

  10. Cheng, J., Agrawal, D., Komarneni, S., Mathis, M., and Roy, R., “Microwave processing of WC-Co composites and ferroic titanates,” Mater. Res. Innov., Vol. 1, pp. 44–52, 1997.

    Article  Google Scholar 

  11. Nadagouda, M. N. and Varma, R. S., “Preparation of Novel Metallic and Bimetallic Cross-Linked Poly (vinyl alcohol) Nanocomposites under Microwave Irradiation,” Macromol. Rapid Commun., Vol. 28, pp. 465–472, 2007.

    Article  Google Scholar 

  12. Agrawal, D., “Latest global developments in microwave materials processing,” Materials Research Innovations, Vol. 14, No. 1, pp. 3–10, 2010.

    Article  Google Scholar 

  13. Oda, S. J., “Microwave Remediation of Hazardous Waste: A Review, in: Beatty, R. L., Sutton, W. H., and Iskander, M. F., (eds.), Microwave Processing of Materials III,” Materials Research Society, Vol. 269, pp. 453–464, 1992.

  14. Krause, R. T. and Helt, J. E., “Applications of Microwave Radiation in Environmental Remediation Technologies, Microwaves, in: Clark, D. E., Tinga, W. R., and Laia, J. R., (eds.), Theory and Application in Materials Processing,” Ceramic Transactions American Ceramic Society, Vol. 36, pp. 53–59, 1993.

  15. Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., and Miles, N. J., “Microwave heating applications in environmental engineering-a review,” Resources, Conservation and Recycling, Vol. 34, No. 2, pp. 75–90, 2002.

    Article  Google Scholar 

  16. Lucchesi, M. E., Smadja, J., Bradshaw, S., Louw, W., and Chemat, F., “Solvent free microwave extraction of Elletaria cardamomum L.: A multivariate study of a new technique for the extraction of essential oil,” Journal of Food Engineering, Vol. 79, pp. 1079–1086, 2007.

    Article  Google Scholar 

  17. Chen, S. S. and Spiro, M., “Study of Microwave Extraction of Essential Oil Constituent from Plant Materials,” Journal of Microwave Power and Electromagnetic Energy, Vol. 29, No. 4, pp. 231–241, 1994.

    Google Scholar 

  18. Mitani, T., Oyadomari, M., Suzuki, H., Yano, K., Shinohara, N., Tsumiya, T., Sego, H., and Watanabe, T., “A Feasibility Study on a Continuous-flow type Microwave Pretreatment System for Bioethanol Production from Woody Biomass,” J. Japan Institute of Energy, Vol. 90, pp. 881–885, 2011.

    Article  Google Scholar 

  19. Wicks, G. G., Clark, D. E., and Schulz, R. L., “Microwave Technology for Waste Management Applications: Treatment of Discarded Electronic Circuitry,” DOE Report, WSRC-MS-97-0299, 1997.

  20. Pozar, D. M., “Microwave Engineering,” Addison-Wesley Publishing Co., 1993.

  21. Rademacher, S. E. and Montgomery, N. D., “Base level management of radio frequency radiation protection program,” AFOEHL Report 89-023RC0111DRA, 1989.

  22. Reimbert, C. G., Minzoni, A. A., and Smyth, N. F., “Effect of radiation losses on hotspot formation and propagation in microwave heating,” IMA Journal of Applied Mathematics, Vol. 57, No. 2, pp. 165–179, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Y., Maniruzzaman, M., and Kim, J., “Soft-chemistry based fabrication of gallium nitride nanoparticles,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 3, pp. 573–576, 2011.

    Article  Google Scholar 

  24. Zumeta, I., Ayllo’n, J. A., Gonzalez, B., Domenech, X., and Vigil, E., “TiO2 Films Obtained by microwave-activated chemical-bath deposition used to improve TiO2-conducting glass contact,” Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 1728–1732, 2009.

    Article  Google Scholar 

  25. Unalan, H. E., Hiralal, P., Rupesinghe, N., Dalal, S., Milne, W. I., and Amaratunga, G. A., “Rapid synthesis of Aligned zinc oxide nanowires,” Nanotechnology, Vol. 19, No. 25, Paper No. 255608, 2008.

  26. Zajýckova, L., Synek, P., Jasek, O., Elias, M., David, B., Bursýk, B. J., Pizurova, N., Hanzlikova, R., and Lazar, L., “Synthesis of carbon nanotubes and iron oxide nanoparticles in MW plasma torch with Fe(CO)(5) in gas feed,” Appl. Surf. Sci., Vol. 255, pp. 5421–5424, 2009.

    Article  Google Scholar 

  27. Cao, S. W. and Zhu, Y. J., “Iron oxide hollow spheres: microwavehydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties,” Acta Mater., Vol. 57, No. 7, pp. 2154–2165, 2009.

    Article  Google Scholar 

  28. Tompsett, G. A., Conner, W. C., and Yngvesson, K. S., “Microwave Synthesis of Nanoporous Materials,” Chem. Phys. Chem., Vol. 7, pp. 296–319, 2006.

    Article  Google Scholar 

  29. Parsons, J. G., Luna, C., Botez, C. E., Elizalde, J., and Gardea-Torresdey, J. L., “Microwave assisted synthesis of iron(iii) oxyhydroxides/oxides characterized using transmission electron microscopy, X-ray diffraction, and x-ray absorption spectroscopy,” J. Phys. Chem. Solids, Vol. 70, pp. 555–560, 2009.

    Article  Google Scholar 

  30. Wang, J., Binner, J., Vaidhyanathan, B., Joomun, N., Kilner, J., Dimitrakis, G., and Cross, T. E., “Evidence for the Microwave Effect During Hybrid Sintering,” J. Am. Ceram. Soc., Vol. 89, No. 6, pp. 1977–1984, 2006.

    Article  Google Scholar 

  31. Varadan, V. K. and Xie, J., “Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD,” Smart Mater. Struct., Vol. 11, No. 4, pp. 610–616, 2002.

    Article  Google Scholar 

  32. Barmatz, M., Jackson, H., and Radtke, R., “Microwave technique for brazing materials,” US Patent No. 6054693, 2000.

  33. Ripley, E. B., Eggleston, P. A., and White, T. L., “Direct Microwave Coupling to Metals at Elevated Temperatures, in: Folz, D. C., Booske, J. H., Clark, D. E., and Gerling, J. F., (Eds.), Microwave and radio frequency applications,” Proc. 3rd World Cong. on Microwave and radio frequency applications, p. 241, 2003.

  34. Gedevanishvili, S., Agrawal, D., Roy, R., and Vaidhyanathan, B., “Microwave processing using highly absorbing powdered material layers,” US Patent No. 6512216, 2003.

  35. Hwang, J.-Y., Huang, X., and Shi, S., “Steel Production with Microwave Assisted Electric Arc Furnace Technology, in: Han, Q., Ludtka, G. M., and Zhai, Q., (eds.), Materials processing under the influence of external fields,” TMS Publication, pp. 225–234, 2007.

  36. Nagata, K., Ishizaki, K., Sato, M., Matsubara, A., Takayama, S., Motojima, O., Agrawal, D., and Roy, R., “A concept of microwave furnace for steel making in industry scale,” Proc. 11th Int. Conf. on Microwave and high frequency heating, pp. 87–90, 2007.

  37. Roy, R., Agrawal, D. K., Cheng, J., and Gedevanishvilli, S., “Full Sintering of Powdered Metal Bodies in a Microwave Field,” Nature, Vol. 399, pp. 668–670, 1999.

    Article  Google Scholar 

  38. Sethi, G., Upadhyaya, A., Agrawal, D., and Roy, R., “Microwave and Conventional Sintering of Pre-mixed and Prealloyed Cu-12Sn Bronze,” Sci. Sinter., Vol. 35, pp. 49–65, 2003.

    Article  Google Scholar 

  39. Takayama, S., Saiton, Y., Sato, M., Nagasaka, T., Muroga, T., and Ninomiya, Y., “Microwave sintering for metal powders in the air by non-thermal effect,” Proc. 9th Int. Conf. on Microwave and high frequency heating, pp. 369–372, 2003.

  40. Ishizaki, K., Nagata, K., and Hayashi, T., “Production of Pig Iron from Magnetite Ore-Coal Composite Pellets by Microwave Heating,” ISIJ International, Vol. 46, No. 10, pp. 1403–1409, 2006.

    Article  Google Scholar 

  41. Nadagouda, M. N. and Varma, R. S., “Microwave-Assisted Shape-Controlled Bulk Synthesis of Noble Nanocrystals and Their Catalytic Properties,” Crystal Growth & Design, Vol. 7, No. 4, pp. 686–690, 2007.

    Article  Google Scholar 

  42. Dauerman, L., Windgasse, G., Zhu, N., and He, Y., “Microwave Treatment of Hazardous Wastes: Physical Chemical Mechanisms, in: Beatty, R. L., Sutton, W. H., and Iskander, M. F., (eds.), Microwave Processing of Materials III,” Materials Research Society, Vol. 269, pp. 465–469, 1992.

  43. Oda, S. J., “Dielectric Processing of Hazardous Materials-Present and Future Opportunities, in: Iskander, M. F., Lauf, R. J., and Beatty, R. L., (eds.), Microwave Processing of Materials IV,” Materials Research Society, Vol. 347, pp. 371–382, 1994.

  44. Shang, H., Snape, C. E., Kingman, S. W., and Robinson, J. P., “Treatment of Oil-Contaminated Drill Cuttings by Microwave Heating in a High-Power Single-Mode Cavity,” Ind. Eng., Chem., Res., Vol. 44, pp. 6837–6844, 2005.

    Article  Google Scholar 

  45. Kingman, S., Robinson, J., Antonio, C., and Pereira, I., “Latest Developments in the Microwave Processing of Oil Contaminated Drill Cuttings,” Microwave Symposium Digest (MTT), pp. 1432–1435, 2010.

  46. Iordache, D., Niculae, D., and Hathazi, F. I., “Utilization of Microwave Energy for Decontamination of Oil Polluted Soils,” J. Microwave Power and Electromagnetic Energy, Vol. 44, No. 4, pp. 213–221, 2010.

    Google Scholar 

  47. Roland, U., Holzer, F., Trommler, U., and Kopinke, F.-D., “Electrode Design for Soil Decontamination with Radio-Frequency Heating,” Chem. Eng. Technol., Vol. 34, No. 10, pp. 1652–1659, 2011.

    Article  Google Scholar 

  48. Shang, H., Kingman, S. W., Snape, C. E., and Robinson, J. P., “Reactors Effects on Microwave Decontamination of Oily Wastes in a Multimode Cavity,” Ind. Eng. Chem. Res., Vol. 46, pp. 4811–4818, 2007.

    Article  Google Scholar 

  49. Ko, T. J. and Yoon, I. J., “Mill-Grinding with Electroplated Diamond Abrasives for Ceramic Cutting,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 1, pp. 5–10, 2012.

    Article  Google Scholar 

  50. Jerby, E., Dikhtyar, V., and Aktushev, O., “Microwave Drill for Ceramics,” Ceramic Bulletin, Vol. 82, pp. 35–41, 2003.

    Google Scholar 

  51. Kim, B. G. and Lee, D. G., “Development of microwave foaming method for phenolic insulation foams,” Journal of Materials Processing Technology, Vol. 201, pp. 716–719, 2008.

    Article  Google Scholar 

  52. Wu, K., Park, H.-S., and Willert-Porada, M., “Pyrolysis of polyurethane by microwave hybrid heating for the processing of NiCr foams,” Journal of Materials Processing Technology, Vol. 212, pp. 1481–1487, 2012.

    Article  Google Scholar 

  53. Feher, L. and Thumm, M., “Microwave innovation for industrial composite fabrication: The HEPHAISTOS technology,” IEEE Transactions on Plasma Science, Vol. 32, pp. 73–79, 2004.

    Article  Google Scholar 

  54. Microwave Power Components, http://microwaveprocessing.com/

  55. Pringle, J. A., “Microwave pyrolysis apparatus for waste tires,” US Patent No. 7101464, 2006.

  56. Pringle, F., “Microwave-based recovery of hydrocarbon and fossil fuels,” US Patent Application No. 0131591 A1, 2007.

  57. Wang, Y., Li, Y., Wang, S., Zhang, L., Gao, M., and Tang, J., “Review of dielectric drying of foods and agricultural products,” Int. J. Agric. and Biol. Eng., Vol. 4, No. 1, pp. 1–19, 2011.

    Google Scholar 

  58. IMS, Industrial Microwave Heating Systems, Morrisville, North Carolina, USA.

  59. Wang, J., Zhang, J., Zhao, B., Wang, X., Wu, Y., and Yao, J., “A comparison study on microwave-assisted extraction of Potentilla anserine L. polysaccharides with conventional method: Molecule weight and antioxidant activities evaluation,” Carbohydrate Polymers, Vol. 80, pp. 84–93, 2010.

    Article  Google Scholar 

  60. Fang, X., Wang, J., Yu, X., Zhang, G., and Zhao, J., “Optimization of microwave-assisted extraction followed by RP-HPLC for the simultaneous determination of oleanolic acid and ursolic acid in the fruits of Chaenomeles sinensis,” J. Sep. Sci., Vol. 33, pp. 1147–1155, 2010.

    Google Scholar 

  61. SAIREM, www.asirem.com

  62. Nadagouda, M. N., Speth, T. F., and Varma, R. S., “Microwave-Assisted Green Synthesis of Silver Nanostructures,” Accounts of Chemical Research, Vol. 44, No. 7, pp. 469–478, 2011.

    Article  Google Scholar 

  63. Hayes, B. L., “Recent Advances in Microwave-Assisted Synthesis,” Aldrichimica Acta, Vol. 37, No. 2, pp. 66–76, 2004.

    Google Scholar 

  64. Varma, R. S., “Greener approach to nanomaterials and their sustainable applications,” Current Opinion in Chemical Engineering, Vol. 1, pp. 123–128, 2012.

    Article  Google Scholar 

  65. Georghiou, G. E., Ehlers, R. A., Hallac, A., Malan, H., Papadakis, A. P., and Metaxas, A. C., “Finite Elements in the Simulation of Dielectric Heating Systems, in: Willert-Porada, M., (Ed.), Advances in Microwave and Radio Frequency Processing,” Springer, pp. 167–177, 2006.

  66. Ehlers, R. A. and Metaxas, A. C., “3-D FE Discontinuous Sheet for Microwave Heating,” IEEE Trans. Microwave Theory and Techniques, Vol. 51, No. 3, pp. 718–726, 2003.

    Article  Google Scholar 

  67. Fukushima, J., Sato, M., and Nakamura, H., “Plasma Model for Energy Transformation Mechanism of Non-Thermal Microwave Effect,” Plasma and Fusion Research: Rapid Communications, Vol. 7, Paper No. 1206012, 2001.

  68. Papageorgiou, L., Metaxas, A. C., and Georghiou, G. E., “Threedimensional numerical modeling of gas discharges at atmospheric pressure incorporating photoionization phenomena,” J. of Physics D: Appl. Phys., Vol. 44, No. 4, Paper No. 045203, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Mun, S.C., Ko, HU. et al. Review of microwave assisted manufacturing technologies. Int. J. Precis. Eng. Manuf. 13, 2263–2272 (2012). https://doi.org/10.1007/s12541-012-0301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0301-2

Keywords

Navigation