Skip to main content

Advertisement

Log in

A recent development trend in microwave radiation-based material engineering

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The advancement of science and technology requires simple, easy-to-control, cheap, fast, and eco-friendly technologies for material synthesis, modification, and processing. Microwave technology provides an alternative due to its well-known characteristics such as selective heating, fast heating, reproducibility, flexible controls (via time, power, and frequency), high energy efficiency, and easy temperature control. In microwave-based material processing, a direct molecular interaction between electromagnetic energy and the material takes place and causes complex volumetric heating which is one of the technical challenges in material science development. This makes microwave energy one of the most important future resources for material processing. In this review, the importance and the uses of microwave technology primarily for material synthesis and modification that are abreast of recent advances will be summarized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Web of Science, clarivate analytics)

Fig. 2
Fig. 3
Fig. 4

Adapted from ref. [43]

Fig. 5
Fig. 6

(Adapted from Ref [57])

Fig. 7

(Adapted from Ref [65])

Similar content being viewed by others

References

  1. Hippel AV (1954) Dielectrics and waves. Wiley, New York

    Google Scholar 

  2. Sutton WH (1989) Microwave processing of ceramics materials. Ceram Bull 68:376

    CAS  Google Scholar 

  3. Collin RE (1998) Foundations of microwave engineering. McGraw-Hill, New York

    Google Scholar 

  4. Thostenson ET, Chou TW (1999) Microwave processing: fundamentals and applications. Compos A Appl Sci Manuf 30:1055

    Article  Google Scholar 

  5. Clark DE, Folz DC, West JK (2000) Processing materials with microwave energy. Mater Sci Eng A 287:153

    Article  Google Scholar 

  6. Kanwar R, Fatima R, Kanwar R, Javid MT, Muhammad UW, Ashraf Z, Khalid A (2022) Biological, physical and chemical synthesis of silver nanoparticles and their non-toxic bio-chemical application: a brief review. Pure Appl Biol 11:421

    Article  CAS  Google Scholar 

  7. Azeem M, Fournet MB, Attallah OA (2022) Ultrafast 99% polyethylene terephthalate depolymerization into value added monomers using sequential glycolysis-hydrolysis under microwave irradiation. Arab J Chem 15:103903

    Article  CAS  Google Scholar 

  8. Shahbazi M, Aghvami-Panah M, Panahi-Sarmad M, Seraji AA, Zeraatkar A, Ghaffarian Anbaran R, Xiao X (2022) Fabricating bimodal microcellular structure in polystyrene/carbon nanotube/glass-fiber hybrid nanocomposite foam by microwave-assisted heating: a proof-of-concept study. J Appl Polym Sci 139:52125

    Article  CAS  Google Scholar 

  9. Garcia-Millan T, Swift TA, Morgan DJ, Harniman RL, Masheder B, Hughes S, Davis SA, Oliver TAA, Galan MC (2022) Small variations in reaction conditions tune carbon dot fluorescence. Nanoscale 14:6930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Vasudev H, Singh G, Bansal A, Vardhan S, Thakur L (2019) Microwave heating and its applications in surface engineering: a review. Mater Res Express 6:102001

    Article  CAS  Google Scholar 

  11. Semenov A, Kiryakova M, Samofalova R (2019) Investigation of heating of nanomodified polymers under the action of microwave radiation. Mater Sci Eng 696:012023

    Google Scholar 

  12. Zhang J, Duan Y, Wang B, Zhang X (2020) Interfacial enhancement for carbon fibre reinforced electron beam cured polymer composite by microwave irradiation. Polymer 192:122327

    Article  Google Scholar 

  13. Chatel G, Varma RS (2019) Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to green chemistry. IJGC 21:643

    Google Scholar 

  14. Martusevich A, Kostrov AV (2018) Biomedical applications of microwave radiation: innovative approaches. In: EPJ web of conferences, vol 195, p 00003

  15. Yang S, Liang B, Liu C, Liu J, Fang C, Ai Y (2021) Microwave sintering and microwave dielectric properties of (1–x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 Ceramics. Mater 14:438

    Article  CAS  Google Scholar 

  16. Wei C, Cheng J, Zhang M, Zhou R, Wei B, Yu X, Luo L, Chen P (2022) Fabrication of diamond/WeCu functionally graded material by microwave sintering. Nucl Eng Technol 54:975

    Article  CAS  Google Scholar 

  17. Bhatt S, Suthar S, Mistry D, Ghetiya N, Ranganathan G (2020) Feasibility study on microwave melting of lead metal using 2.45 GHz microwave frequency. In: AIP Conf Proceed, vol 2235, p 020004.

  18. Naik P, Singh I, Sharma AK (2022) Processing of polymer matrix composites using microwave energy: a review. Compos Part A Appl Sci Eng 156:106870

    Article  CAS  Google Scholar 

  19. Chandrasekaran S, Ramanathan S, Basak T (2012) Microwave material processing—a review fluid mechanics and transport phenomenon. AIChE J 58:330

    Article  CAS  Google Scholar 

  20. Farid M, Soegijono B, Mas’ud ZA (2019) Microwave-assisted-cationic polymerization of different type palm oils with boron trifluoride etherate catalyst. Indones J Chem 19:30

    Article  CAS  Google Scholar 

  21. Sarkar A, Edson C, Tian D, Fink TD, Cianciotti K, Gross RA, Bae C, Zha RH (2021) Rapid synthesis of silk-like polymers facilitated by microwave irradiation and click chemistry. Biomacromol 22:95

    Article  CAS  Google Scholar 

  22. Pérez-Fernández C, Valles P, González-Toril E, Mateo-Martí E, de la Fuente JL, Ruiz-Bermejo M (2022) Tuning the morphology in the nanoscale of NH4CN polymers synthesized by microwave radiation: a comparative study. Polymers 14:57

    Article  Google Scholar 

  23. Wang YM, Zheng SX, Chang HI, Tsai HY, Liang M (2017) Microwave-assisted synthesis of thermo- and pH-responsive antitumor drug carrier through reversible addition–fragmentation chain transfer polymerization. eXPRESS Polym Lett 11:293

    Article  CAS  Google Scholar 

  24. Aldalbahi A, Rahaman M, El-Faham A (2020) Microwave-assisted synthesis of cross-linked co-poly(itaconic anhydride-methyl methacrylate)- the effects of the molar ratio and cross-linking agent on the thermal stability. Int J Polym Sci 2020:9706106. https://doi.org/10.1155/2020/9706106

    Article  CAS  Google Scholar 

  25. Mohammadi E, Aliofkhazraei M, Hasanpoor M, Chipara M (2018) Hierarchical and complex ZnO nanostructures by microwave-assisted synthesis: morphologies, growth mechanism and classification. Crit Rev Solid State Mater Sci 43:475

    Article  CAS  Google Scholar 

  26. Karunakaran G, Cho EB, Kumar GS, Kolesnikov E, Dmitry A, Ali S (2021) Microwave-assisted synthesis of superparamagnetic mesoporous Co-doped hydroxyapatite nanorods for various biomedical applications. Ceram Inter 47:8642

    Article  CAS  Google Scholar 

  27. Shibata H, Abe M, Sato K, Uwai K, Tokuraku K, Iimori T (2022) Microwave-assisted synthesis and formation mechanism of fluorescent carbon dots from starch. Carbohydr Polym Technol Appl 3:100218

    CAS  Google Scholar 

  28. Liu Y, Guo N, Yin P, Zhang C (2019) Facile growth of carbon nanotubes using microwave ovens: the emerging application of highly efficient domestic plasma reactors. Nanoscale Adv 1:4546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhan M, Pan G, Wang Y, Kuang T, Zhou F (2017) Ultrafast carbon nanotube growth by microwave irradiation. Diam Relat Mater 77:65

    Article  CAS  Google Scholar 

  30. Gou L, Chipara M, Zaleski JM (2007) Convenient, rapid synthesis of Ag nanowires. Chem Mater 19:1755

    Article  CAS  Google Scholar 

  31. Janus L, Piatkowski M, Radwan-Pragłowska J (2019) Microwave-assisted synthesis and characterization of poly(L-lysine)-based polymer/carbon quantum dot nanomaterials for biomedical purposes. Mater 12:3825

    Article  CAS  Google Scholar 

  32. Szewczyk A, Skwira A, Ginter M, Tajer D, Prokopowicz M (2021) Microwave-assisted fabrication of mesoporous silica-calcium phosphate composites for dental application. Polymers 13:53

    Article  CAS  Google Scholar 

  33. Nadagouda MN, Varma RS (2007) Preparation of novel metallic and bimetallic cross-linked poly(vinyl) nanocomposites under microwave irradiation. Macromol Rapid Commun 28:465

    Article  CAS  Google Scholar 

  34. Sung PC, Chiu TH, Chang HC (2014) Microwave curing of carbon nanotube/epoxy adhesives. Compos Sci Technol 104:97

    Article  CAS  Google Scholar 

  35. Prosuntsov PV, Reznik SV, Gareev AR, Polsky PV (2020) Matrix curing in the workpieces made of polymer composites using microwave radiation. In: IOP conference series: materials science and engineering, vol 934, p 012027

  36. Li K, Ping T, Zhang H, Zhang J, Cheng J, Gao F (2021) Quantitative evaluation of the non-thermal effect in microwave induced polymer curing. RSC Adv 11:3740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dasari SK, Rangapuram M, Fashanu O, Chandrashekhara K, Iyyer N, Phan N (2021) Manufacturing and experimental evaluation of microwave cured carbon/epoxy composites. Appl Compos Mater 28:2087

    Article  CAS  Google Scholar 

  38. Singh MK, Zafar S, Talha M (2019) Development of porous bio-composites through microwave curing for bone tissue engineering. Mater Today Proc 18:731

    Article  Google Scholar 

  39. Ku H (2003) Curing vinyl ester particle-reinforced composites using microwaves. J Compos Mater 37:207

    Article  Google Scholar 

  40. Budimir A, Vukusic SB, Flincec SG (2012) Study of antimicrobial properties of cotton medical textiles treated with citric acid and dried/cured by microwaves. Cellulose 19:289

    Article  CAS  Google Scholar 

  41. Grewell D (2003) Plastic and composite welding handbook. Hanser Publisher, Munich

    Google Scholar 

  42. Harper JF, Price DM, Zhang J (2005) Microwave forming and welding of polymers. 10th international conference on Mi-crowave and RF heating. (Number FP6-50 5712-2)

  43. Foong PY, Voon CH, Lim BY, Arshad MKM, Gopinath SCB, Foo KL, Rahim RA, Hashim U (2021) Feasibility study on microwave welding of thermoplastic using multiwalled carbon nanotubes as susceptor. Nanomater Nanotechnol 11:1

    Article  Google Scholar 

  44. Kravchenko OG, Bonab VS, Manas-Zloczower I (2019) Spray-assisted microwave welding of thermoplastics using carbon nanostructures with enabled health monitoring. Polym Eng Sci 59:2247

    Article  CAS  Google Scholar 

  45. Zhang M, Han S, Xuan ZY, Fang X, Liu X, Zhang W, Chen HJ (2021) Study of microwave-induced Ag nanowire welding for soft electrode conductivity enhancement. Micromachines 12:618

    Article  PubMed  PubMed Central  Google Scholar 

  46. Seshadri I, Esquenazi GL, Borca-Tasciuc T, Keblinski P, Ramanath G (2015) Multifold increases in thermal conductivity of polymer nanocomposites through microwave welding of metal nanowire fillers. Adv Mater Interfaces 2:1500186

    Article  Google Scholar 

  47. Wu T, Pan Y, Liu E, Li L (2012) Carbon nanotube/polypropylene composite particles for microwave welding. J Appl Polym Sci 126:283

    Article  Google Scholar 

  48. Peng L, Guo R, Lan J, Jiang S, Wang X (2016) Microwave-assisted coating of silver nanoparticles on bamboo rayon fabrics modified with poly(diallyldimethylammonium chloride). Cellulose 23:2677

    Article  CAS  Google Scholar 

  49. Nicosia A, Vento F, Pellegrino AL, Ranc V, Piperno A, Mazzaglia A, Mineo P (2020) Polymer-based graphene derivatives and microwave-assisted silver nanoparticles decoration as a potential antibacterial agent. Nanomater 10:2269

    Article  CAS  Google Scholar 

  50. Lermusiaux L, Plissonneau M, Bertry L, Drisko GL, Buissette V, Mercier TL, Duguet E, Tréguer-Delapierre M (2021) Seeded growth of ultrathin gold nanoshells using polymer additives and microwave radiation. Sci Rep 11:17831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tran MQ, Nakata K, Horikoshi S (2018) Improvement of wettabilty of photocatalytic TiO2–coated wafers by microwave/UV pre-treatment. J Oleo Sci 67:1171

    Article  PubMed  CAS  Google Scholar 

  52. Cheng A, Goodwin WB, deGlee BM, Gittens RA, Vernon JP, Hyzy SL, Schwartz Z, Sandhage KH, Boyan BD (2017) Surface modification of bulk titanium substrates for biomedical applications via low-temperature microwave hydrothermal oxidation. J Biomed Mater Res A 106A:782

    Google Scholar 

  53. Choi W, Choi K, Yu C (2018) Ultrafast nanoscale polymer coating on porous 3D structures using microwave irradiation. Adv Funct Mater 28:1704877

    Article  Google Scholar 

  54. Sharma A, Singh A, Chawla V, Grewal JS, Bansal A (2022) Microwave processing and characterization of alumina reinforced HA cladding for biomedical applications. Mater Today Proc 57:650

    Article  CAS  Google Scholar 

  55. Chiller TM (2019) Salmonella/foodborne outbreaks in USA. Pathology 51:S59–S60

    Article  Google Scholar 

  56. Barbosa-Cánovas GV, Medina-Meza I, Candoğan K, Bermúdez-Aguirre D (2014) Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat Sci 98:420–434

    Article  PubMed  Google Scholar 

  57. Juming T (2015) Unlocking potentials of microwaves for food safety and quality. J Food Sci 80:E1776

    Google Scholar 

  58. Tang Liu F, Pathak S, Eves E, II (2006). Apparatus and method for heating objects with microwaves, US Patent No. 7119313

  59. Soni A, Smith J, Thompson A, Brightwell G (2020) Microwave-induced thermal sterilization—a review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends Food Sci Technol 97:433

    Article  CAS  Google Scholar 

  60. Dhawan S, Varney C, Anovas G, Tang J, Selim F, Sablani S (2014) The impact of microwave-assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films. J Appl Polym Sci. https://doi.org/10.1002/APP.40376

    Article  Google Scholar 

  61. Zhu X, Yang Y, Duan Z (2018) Research progress on the effect of microwave sterilization on agricultural products quality. Environ Earth Sci 113:012096

    Google Scholar 

  62. Guo J, Zhu H, Yang Y, Guo Q (2023) Continuous-flow microwave milk sterilisation system based on a coaxial slot radiator. Foods 12:459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ryynänen S, Ohlsson T (1996) Microwave heating uniformity of ready meals as affected by placement, composition, and geometry. J Food Sci 61:620

    Article  Google Scholar 

  64. Chizoba Ekezie FG, Sun DW, Han Z, Cheng JH (2017) Microwave-assisted food processing technologies for enhancing product quality and process efficiency: a review of recent developments. Trends Food Sci Technol 67:58

    Article  CAS  Google Scholar 

  65. Wang C, Liu H, Song L, Tan J, Yang W, Cheng L (2021) Temperature evolution atomistic hot-spot effects and thermal runaway during microwave heating of polyacrylonitrile: a ReaxFF molecular dynamics simulation. Nano Sel 2:2373

    Article  CAS  Google Scholar 

  66. Lim S, Bowen J, Degli-Alessandrini G, Anand M, Cowley A, Prabhu VL (2021) Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers. Sci Rep 11:2133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Akkari E, Chevallier S, Boillereaux L (2006) Observer-based monitoring of thermal runaway in microwaves food defrosting. J Process Control 16:993

    Article  CAS  Google Scholar 

  68. Wu X, Thomas JR (2002) Control of thermal runaway in microwave resonant cavities. J Appl Phys 92:3374

    Article  CAS  Google Scholar 

  69. Kriegsmann GA (1992) Thermal runaway in microwave heated ceramics: A one-dimensional model. J Appl Phys 71:1960

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananta Raj Adhikari.

Ethics declarations

Conflict of interest

I hereby declare that the disclosed information is correct and that no other situation of real, potential or apparent conflict of interest is known to me. Further, there is no known competing financial interest that could have influenced the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, A.R., Chipara, M. A recent development trend in microwave radiation-based material engineering. Polym. Bull. (2024). https://doi.org/10.1007/s00289-023-05119-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-023-05119-3

Navigation