Skip to main content
Log in

Efficient prediction of local failures for metallic sandwich plates with pyramidal truss cores during the bending processes

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

An efficient method that employs the virtual equivalent projected model (VEPM) is introduced and formulated in this study to simulate local failures in face sheets and cores of sandwich plates with pyramidal truss cores. This approach is based on two-dimensional FE-analysis that uses the projected shapes of 3D pyramidal truss cores and utilizes virtual properties from the homogenized equivalent elastic-plastic properties of the original material and geometries. To establish the validity of this approach, virtual equivalent projected models are applied to three-point bending, clamped bending and U-bending analyses. The results of simulations have shown that the load-displacement curves and deformed shapes with local failures of the VEPM are analogous to 3D pyramidal cores in three types of bending processes irrespective of the materials and core geometries. In addition, the computational time was greatly reduced. The practicality of this approach has been shown through comparison with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b t1 :

half length of a unit structure of a sandwich plate with a 3D pyramidal truss core

b t2 :

half width of a unit structure of a sandwich plate with a 3D pyramidal truss core

b v :

half length of a unit structure of a sandwich plate with the VEPM

h :

total thickness of a sandwich plate

h c t :

core height of a 3D pyramidal truss

h c v :

core height of the VEPM

t c t :

core element thickness of a 3D pyramidal truss core

t f t :

thickness of a face sheet of a sandwich plate with a 3D pyramidal truss core

t f v :

thickness of a face sheet of a sandwich plate with the VEPM

t c v :

core element thickness of the VEPM

α t :

out of plane core angle of a 3D pyramidal truss

α v :

out of plane core angle of the VEPM

β t :

in-plane core angle of a 3D pyramidal truss

\(\bar \rho _c^t\) :

relative core density of a 3D pyramidal truss core

\(\bar \rho _c^v\) :

relative core density of the VEPM

E t :

elastic constants of a 3D pyramidal truss core

E v :

elastic constants of the VEPM

\(\bar E_{ij}^t\) (i, j =1,2,3 no sum.):

equivalent elastic constants of a 3D pyramidal truss core

\(\bar E_{xx}^v , \bar E_{yy}^v , \bar E_{xy}^v\) :

equivalent elastic constants of the VEPM

σ y t :

yield strength of a 3D pyramidal truss core

σ y v :

yield strength of the VEPM

\(\bar \sigma _{ij}^t\) (i, j =1,2,3 no sum.):

equivalent yield strength of a 3D pyramidal truss core

\(\bar \sigma _{xx}^v , \bar \sigma _{yy}^v , \bar \sigma _{xy}^v\) :

equivalent yield strength of the VEPM

\(\bar \sigma _b^t\) :

local face buckling strength of a 3D pyramidal truss core

\(\bar \sigma _b^v\) :

local face buckling strength of the VEPM

H t :

linear hardening function of a 3D pyramidal truss core

H v :

linear hardening function of the VEPM

\(\bar H_{ij}^t\) (i, j =1,2,3 no sum.):

equivalent linear hardening function of a 3D pyramidal truss core

\(\bar H_{xx}^v , \bar H_{yy}^v , \bar H_{xy}^v\) :

equivalent linear hardening function of the VEPM

P :

punch load per unit width

P yield :

analytic yield load per unit width

δ :

punch stroke

L :

half span length

R:

punch radius

c:

clearance

References

  1. Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W. and Wadley, H. N. G., “Metal Foam: A Design Guide,” Butterworth Heinemann, 2000.

  2. Banhart, J., “Manufacture, characterization and application of cellular metals and metal foams,” Progress in Materials Science, Vol. 46, No. 6, pp. 559–632, 2001.

    Article  Google Scholar 

  3. Wadley, H. N. G., Fleck, N. A. and Evans, A. G., “Fabrication and structural performance of periodic cellular metal sandwich structures,” Composites Sciences and Technology, Vol. 63, No. 16, pp. 2331–2343, 2003.

    Article  Google Scholar 

  4. Wicks, N. and Hutchinson, J. W., “Optimal Truss Plates,” International Journal of Solid and Structures, Vol. 38, No. 30–31, pp. 5165–5183, 2001.

    Article  MATH  Google Scholar 

  5. Deshpande, V. S. and Fleck, N. A., “Collapse of truss core sandwich beams in 3-point bending,” International Journal of Solids and Structures, Vol. 38, No. 36–37, pp. 6275–6305, 2001.

    Article  MATH  Google Scholar 

  6. Chiras, S., Mumm, D. R., Evans, A. G., Wicks, N., Hutchinson, J. W., Dharmasena, K., Wadley, H. N. G. and Fichter, S., “The structural performance of near-optimized truss core panels,” International Journal of Solids and Structures, Vol. 39, No. 15, pp. 4093–4115, 2002.

    Article  Google Scholar 

  7. Wang, J., Evans, A. G., Dharmasena, K. and Wadley, H. N. G., “On the performance of truss panels with Kagome cores,” International Journal of Solids and Structures, Vol. 40, No. 25, pp. 6981–6988, 2003.

    Article  Google Scholar 

  8. Zok, F. W., Rathbun, H. J., Wei, Z. and Evans, A. G., “Design of metallic textile core sandwich panels,” International Journal of Solids and Structures, Vol. 40, No. 21, pp. 5707–5722, 2003.

    Article  MATH  Google Scholar 

  9. Zupan, M., Deshpande, V. S. and Fleck, N. A., “The out-ofplane compressive behavior of woven-core sandwich plates,” European Journal of Mechanics A/Solids, Vol. 23, No. 3, pp. 411–421, 2004.

    Article  MATH  Google Scholar 

  10. Valdevit, L., Hutchinson, J. W. and Evans, A. G., “Structurally optimized sandwich panels with prismatic cores,” International Journal of Solids and Structures, Vol. 41, No. 18–19, pp. 5105–5124, 2004.

    Article  MATH  Google Scholar 

  11. Cote, F., Deshpande, V. S., Fleck, N. A. and Evans, A. G., “The compressive and shear responses of corrugated and diamond lattice materials,” International Journal of Solids and Structures, Vol. 43, No. 20, pp. 6220–6242, 2006.

    Article  MATH  Google Scholar 

  12. Mohr, D., “On the role of shear strength in sandwich sheet forming,” International Journal of Solids and Structures, Vol. 42, No. 11–12, pp. 1491–1512, 2005.

    Article  MATH  Google Scholar 

  13. Hohe, J. and Becker, W., “An energetic homogenisation procedure for the elastic properties of general cellular sandwich cores,” Composites: Part B, Vol. 32, No. 3, pp. 185–197, 2001.

    Article  Google Scholar 

  14. Hohe, J., “A direct homogenisation approach for determination of the stiffness matrix for microheterogeneous plates with application to sandwich panels,” Composites: Part B, Vol. 34, No. 7, pp. 615–626, 2003.

    Article  Google Scholar 

  15. Xu, X. F. and Qiao, P., “Homogenized elastic properties of a honeycomb sandwich with skin effect,” International Journal of Solids and Structures, Vol. 39, No. 8, pp. 2153–2188, 2002.

    Article  MATH  Google Scholar 

  16. Deshpande, V. S. and Fleck, N. A., “Isotropic constitutive models for metallic foams,” Journal of the Mechanics and Physics of Solids, Vol. 48, No. 6–7, pp. 1253–1283, 2000.

    Article  MATH  Google Scholar 

  17. Xue, Z. and Hutchinson, J. W., “Constitutive model for quasistatic deformation of metallic sandwich cores,” International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2205–2238, 2004.

    Article  MATH  Google Scholar 

  18. Zok, F. W., Waltner, S. A., Wei, Z., Rathbun, H. J., McMeeking, R. M. and Evans, A. G., “A protocol for characterizing the structural performance of metallic sandwich panels: Application to pyramidal truss cores,” International Journal of Solids and Structures, Vol. 41, No. 22–23, pp. 6249–6271, 2004.

    Article  MATH  Google Scholar 

  19. Mohr, D., “Multi-scale finite-strain plasticity model for stable metallic honeycombs incorporating microstructural evolution,” International Journal of Plasticity, Vol. 22, No. 10, pp. 1899–1923, 2006.

    Article  MATH  Google Scholar 

  20. Lee, S., Barthelat, F., Hutchinson, J. W. and Espinosa, H. D., “Dynamic failure of metallic pyramidal truss core materials — Experiments and modeling,” International Journal of Plasticity, Vol. 22, No. 11, pp. 2118–2145, 2006.

    Article  MATH  Google Scholar 

  21. Romanoff, J. and Varsta, P., “Bending response of web-core sandwich plates,” Composite Structures, Vol. 81, No. 2, pp. 292–302, 2007.

    Article  Google Scholar 

  22. Ling, Y. E., Lee, H. P. and Cheok, B. T., “Finite element analysis of springback in L-bending of sheet metal,” Journal of Materials Processing Technology, Vol. 168, No. 2, pp. 296–302, 2005.

    Article  Google Scholar 

  23. Jung, C. G., Seong, D. Y., Yang, D. Y., Na, S. J. and Ahn, D. G., “Development of a Continuous Fabrication System for an Metallic Sandwich Plate with a Three-dimensional Truss Core,” International Journal of Advanced Manufacturing Technology, Vol. 45, No. 3–4, pp. 352–361, 2009.

    Article  Google Scholar 

  24. Ahn, D. G., Nam, G. H., Jung, C. G. and Yang, D. Y., “Experimental determination of elastic properties of the core in a thin sandwich plate with a metallic truss core,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 107–113, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Yol Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seong, DY., Jung, CG., Yang, DY. et al. Efficient prediction of local failures for metallic sandwich plates with pyramidal truss cores during the bending processes. Int. J. Precis. Eng. Manuf. 12, 491–503 (2011). https://doi.org/10.1007/s12541-011-0063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-011-0063-2

Keywords

Navigation