Skip to main content

Local Strain Energy Density Concept

  • Chapter
  • First Online:
Advanced Methods of Fatigue Assessment

Abstract

The local strain energy density (SED) approach is elaborated for strength assessments in respect of brittle fracture and high-cycle fatigue. Pointed and rounded (blunt) V-notches subjected to tensile loading (mode 1) are primarily considered, occasionally extended to multiaxial conditions (mode 3, mixed mode 1 and 2). The application to brittle fracture is related to PMMA flat bar specimens with U-notches. The application to high-cycle fatigue comprises fillet-welded joints, weld-like shaped and V-notched base material specimens as well as round bar specimens with V-notch. The relation of the local SED concept to comparable other concepts is investigated, among them the Kitagawa and Atzori diagrams, the Neuber concept of fictitious notch rounding applied to welded joints and the J-integral approach. Alternative details of the local SED concept such as a semicircular control volume, microrounded notches and slit-parallel loading are also investigated. Coarse FE meshes at pointed or rounded notch tips are proven to be acceptable for accurate local SED evaluations. The peak stress method, which is based on a special coarse FE mesh for the assessment of the fatigue strength of welded joints, is also suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atzori B, Dattoma V (1983) A comparison of the fatigue behaviour of welded joints in steels and aluminium alloys. IIW Doc XIII-1089–1083

    Google Scholar 

  • Atzori B, Lazzarin P (2001) Notch sensitivity and defect sensitivity: two sides of the same medal. Int J Fract 107:L3–L8

    Google Scholar 

  • Atzori B, Lazzarin P, Tovo R (1999) From a local stress approach to fracture mechanics: a comprehensive evaluation of the fatigue strength of welded joints. Fatigue Fract Engng Mater Struct 22:369–381

    Google Scholar 

  • Atzori B, Lazzarin P, Filippi S (2001) Cracks and notches – analogies and differences of the relevant stress distributions and practical consequences in fatigue limit predictions. Int J Fatigue 23:355–362

    Google Scholar 

  • Atzori B, Lazzarin P, Meneghetti G (2003) Fracture mechanics and notch sensitivity. Fatigue Fract Engng Mater Struct 26:257–267

    Google Scholar 

  • Atzori B, Berto F, Lazzarin P, Quaresimin M (2006) Multiaxial fatigue behaviour of a severely notched carbon steel. Int J Fatigue 28:485–493

    Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Beltrami E (1885) Sulle condizioni di resistenza dei corpi elastici. Rendic R Istituto Lombardo di Scienze, Lettere e Arti 18, No. 2

    Google Scholar 

  • Berto F, Lazzarin P (2007) Relationships between J-integral and the strain energy evaluated in a finite volume surrounding the tip of sharp and blunt V-notches. Int J Solids Struct 44:4621–4645

    Google Scholar 

  • Berto F, Lazzarin P (2009) A review of the volume-based strain energy density approach applied to V-notches and welded structures. Theor Appl Fract Mech 52:183–194

    Google Scholar 

  • Berto F, Lazzarin P (2011) Fatigue strength of structural components under multiaxial loading in terms of local energy density averaged on a control volume. Int J Fatigue 33:1055–1065

    Google Scholar 

  • Berto F, Lazzarin P, Radaj D (2008) Fictitious notch rounding concept applied to sharp V-notches: Evaluation of the microstructural support factor. Part I: Basic stress equations. Engng Fract Mech 75:3060–3072

    Google Scholar 

  • Berto F, Lazzarin P, Radaj D (2009) Fictitious notch rounding concept applied to sharp V-notches: Evaluation of the microstructural support factor. Part II: Microstructural support analysis. Engng Fract Mech 76:1151–1175

    Google Scholar 

  • Berto F, Lazzarin P, Yates JR (2011) Multiaxial fatigue of V-notched steel specimens: a non-conventional application of the local energy method. Fatigue Fract Engng Mater Struct 33:921–943

    Google Scholar 

  • Boukharouba T, Tamine T, Nui L, Chehimi C, Pluvinage G (1995) The use of notch intensity factor as a fatigue crack initiation parameter. Engng Fract Mech 52:503–512

    Google Scholar 

  • Brown M W (1986) Interfaces between short, long, and non-propagation cracks. In: The behaviour of short fatigue cracks (eds Miller KJ, de los Rios ER), pp. 423–439. Mech Engng Publ, London

    Google Scholar 

  • BS 7608 (1993) Fatigue design and assessment of steel structures – Code of practice. BSI, London

    Google Scholar 

  • Carpinteri A (1987) Stress singularity and generalised fracture toughness at the vertex of re-entrant corners. Engng Fract Mech 26:143–155

    Google Scholar 

  • Cook RD (1995) Finite element modeling for stress analysis. J Wiley, New York

    Google Scholar 

  • Costa JD, Abreu LM, Pinho AC, Ferreira JA (2005) Fatigue behaviour of tubular AlMgSi welded specimens subjected to bending-torsion loading. Fatigue Fract Engng Mater Struct 28:399–407

    Google Scholar 

  • Dunn ML, Suwito W, Cunningham SJ, May CW (1997) Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading. Int J Fract 84:367–381

    Google Scholar 

  • DuQuesnay DL, Topper TH, Yu MT (1986) The effect of notch radius on the fatigue notch factor and the propagation of short cracks. In: Behaviour of short fatigue cracks (eds Miller KJ, de los Rios ER), pp. 323–335. Mech Engng Publ, London

    Google Scholar 

  • Eibl M, Sonsino CM, Kaufmann H, Zhang G (2003) Fatigue assessment of laser-welded thin sheet aluminium. Int J Fatigue 25:719–731

    Google Scholar 

  • El Haddad MH, Smith KN, Topper TH (1979) Fatigue crack propagation of short cracks. J Engng Mater Technol 101:42–46

    Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Engng 85:519–527

    Google Scholar 

  • Eurocode 3 (2005) Design of steel structures, Part 1-9, Fatigue. EN 1993-1-9, Brussels, CEN

    Google Scholar 

  • Frank KH, Fisher JW (1979) Fatigue strength of fillet-welded cruciform joints. J Struct Div ASCE 105(ST9):1727–1740

    Google Scholar 

  • Fricke W, Feltz O (2010) Fatigue tests and numerical analyses of partial load and full load carrying fillet welds at cover plates and lap joints. Welding in the World 54:R225–R233

    Google Scholar 

  • Gdoutos EE (1990) Fracture mechanics criteria and applications. Kluwer Acad Publ, Dordrecht

    Google Scholar 

  • Gimperlein D (1998) S-N curve slope for welded structures. Welding in the World 41:399–406

    Google Scholar 

  • Glinka G (1985) Energy density approach to calculation of inelastic strain-stress near notches and cracks. Engng Fract Mech 22:485–508

    Google Scholar 

  • Gómez FJ, Elices M (2003(1)) Fracture of components with V-shaped notches. Engng Fract Mech 70:1913–1927

    Google Scholar 

  • Gómez FJ, Elices M (2003(2)) A fracture criterion for sharp V-notched samples. Int J Fract 123:163–175

    Google Scholar 

  • Gómez FJ, Elices M (2004) A fracture criterion for blunted V-notched samples. Int J Fract 127:239–264

    Google Scholar 

  • Gómez FJ, Elices M, Valiente A (2000) Cracking in PMMA containing U-shaped notches. Fatigue Fract Engng Mater Struct 23:795–803

    Google Scholar 

  • Gómez FJ, Elices M, Berto F, Lazzarin P (2007) Local strain energy density to assess the static failure of U-notches in plates under mixed mode loading. Int J Fract 145:29–45

    Google Scholar 

  • Gross R, Mendelson A (1972) Plane elastostatic analysis of V-notched plates. Int J Fract Mech 8:267–272

    Google Scholar 

  • Gurney TR (1991) The fatigue strength of transverse fillet-welded joints. Abington Publ, Cambridge

    Google Scholar 

  • Haibach E (ed) (52003) FKM Guideline – Analytical strength assessment of components in mechanical engineering. FKM, Frankfurt/M

    Google Scholar 

  • Hobbacher A (ed) (2009) Fatigue design of welded joints and components. IIW-Doc XIII-2151-07/XV-1254-07. Welding Research Council, Bulletin 520, New York

    Google Scholar 

  • Howland RC (1929/30) On the stresses in the neighbourhood of a circular hole in a strip under tension. Phil Trans Roy Soc (London) A229:49–86

    Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Irwin GR (1958) Fracture. In: Handbuch der Physik, Vol 4, pp 551–590. Springer, Berlin

    Google Scholar 

  • Kihara S, Yoshii A (1991) A strength evaluation method of a sharply notched structure by a new parameter, the equivalent stress intensity factor. JSME Int J 34:70–75

    Google Scholar 

  • Kihl D, Sarkani S (1997) Thickness effects on the fatigue strength of welded steel cruciforms. Int J Fatigue 19:S311–S316

    Google Scholar 

  • Kirsch G (1898) Die Theorie der Elasitzität und die Bedürfnisse der Festigkeitslehre. Z VDI 42:797–807

    Google Scholar 

  • Kitagawa H, Takahashi S (1976) Applicability of fracture mechanics to very small cracks. In: Proc 2nd Int Conf Mech Behaviour of Materials, pp. 627–631. Boston Mass

    Google Scholar 

  • Küppers M, Sonsino CM (2003) Critical plane for the assessment of the fatigue behaviour of welded aluminium under multiaxial loading. Fatigue Fract Engng Mater Struct 26:507–513

    Google Scholar 

  • Kurath P (1992) Multiaxiality fatigue criteria for spot welds. SAE Techn Paper 920668. Warrendale Pa

    Google Scholar 

  • Lazzarin P, Berto F (2005(1)) Some expressions for the strain energy in a finite volume surrounding the root of blunt V-notches. Int J Fract 135:161–185

    Google Scholar 

  • Lazzarin P, Berto F (2005(2)) From Neuber’s elementary volume to Kitagawa and Atzori’s diagrams: an interpretation based on local energy. Int J Fract 135:L33–L38

    Google Scholar 

  • Lazzarin P, Berto F (2008) Control volumes and strain energy density under small and large scale yielding due to tension and torsion loading. Fatigue Fract Engng Mater Struct 31:95–107

    Google Scholar 

  • Lazzarin P, Filippi S (2006) A generalized stress intensity factor to be applied to rounded V-shaped notches. Int J Solids Struct 43:2461–2478

    Google Scholar 

  • Lazzarin P, Livieri P (2001) Notch stress intensity factors and fatigue strength of aluminium and steel welded joints. Int J Fatigue 23:225–232

    Google Scholar 

  • Lazzarin P, Tovo R (1998) A notch stress intensity factor approach to the stress analysis of welds. Fatigue Fract Engng Mater Struct 21:1089–1103

    Google Scholar 

  • Lazzarin P, Zambardi R (2001) A finite volume energy based approach to predict the static and fatigue behaviour of components with sharp V-shaped notches. Int J Fract 112:275–298

    Google Scholar 

  • Lazzarin P, Zambardi R (2002) The equivalent strain energy density approach reformulated and applied to sharp V-shaped notches under localized and generalized plasticity. Fatigue Fract Engng Mater Struct 25:917–928

    Google Scholar 

  • Lazzarin P, Zappalorto M (2008) Plastic notch stress intensity factors for pointed V-notches under antiplane shear loading. Int J Fract 152:1–25

    Google Scholar 

  • Lazzarin P, Livieri P, Zambardi R (2002) A J-integral based approach to predict the fatigue strength of components weakened by sharp V-shaped notches. Int J Comp Appl Techn 15:202–210

    Google Scholar 

  • Lazzarin P, Lassen T, Livieri P (2003) A notch stress intensity approach applied to fatigue life predictions of welded joints with different local toe geometry. Fatigue Fract Engng Mater Struct 26:49–58

    Google Scholar 

  • Lazzarin P, Sonsino CM, Zambardi R (2004) A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings. Fatigue Fract Engng Mater Struct 27:127–140

    Google Scholar 

  • Lazzarin P, Berto F, Radaj D (2006) Uniform fatigue strength of butt and fillet welded joints in terms of local strain energy density. In: Proc 9th Int Fatigue Congress, ICF9. Elsevier, Oxford, CD Rom

    Google Scholar 

  • Lazzarin P, Berto F, Radaj D (2007) Fatigue design of welded joints by local approaches: comparison between fictitious notch rounding and strain energy averaging. In: Advances in fracture and damage mechanics VI, Key Engng Mater 248/249:449–452

    Google Scholar 

  • Lazzarin P, Berto F, Gómez FJ, Zappalorto M (2008(1)) Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints. Int J Fatigue 30:1345–1357

    Google Scholar 

  • Lazzarin P, Livieri P, Berto F, Zappalorto M (2008(2)) Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading. Engng Fract Mech 75:1875–1889

    Google Scholar 

  • Lazzarin P, Berto F, Radaj D (2009) Fatigue-relevant stress field parameters of welded lap joint: pointed slit tip compared with keyhole notch. Fatigue Fract Engng Mater Struct 32:713–735

    Google Scholar 

  • Lazzarin P, Berto F, Zappalorto M (2010) Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications. Int J Fatigue 32:1559–1567

    Google Scholar 

  • Livieri P (2003) A new path-independent integral applied to notched components under mode I loadings. Int J Fract 123:107–125

    Google Scholar 

  • Livieri P (2008) Use of J-integral to predict static failures in sharp V-notches and rounded U-notches. Engng Fract Mech 75:1779–1793

    Google Scholar 

  • Livieri P, Lazzarin P (2005) Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values. Int J Fract 133:247–276

    Google Scholar 

  • Maddox SJ (1987) The effect of plate thickness on the fatigue strength of fillet-welded joints. Abington Publ, Cambridge

    Google Scholar 

  • Maddox SJ (21991) Fatigue strength of welded structures. Abington Publ, Cambridge

    Google Scholar 

  • Meneghetti G (2008) The peak stress method applied to fatigue assessments of steel and aluminium fillet-welded joints subjected to mode 1 loading. Fatigue Fract Engng Mater Struct 31:346–369

    Google Scholar 

  • Meneghetti G, Lazzarin P (2007) Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components. Fatigue Fract Engng Mater Struct 30:95–106

    Google Scholar 

  • Meneghetti G, Lazzarin P (2010) The peak stress method for fatigue strength assessment of welded joints with weld toe or weld root failures. IIW Doc XIII-2322-10; Welding in the World (2011), 55:22–29

    Google Scholar 

  • Meneghetti G, Lazzarin P (2011) The use of peak stress for fatigue strength assessments of welded lap joints and cover plates with toe and root failures. IIW Doc XIII-2375–2311

    Google Scholar 

  • Moftakhar A, Buczynski A, Glinka G (1995) Calculation of elastoplastic strains and stresses in notches under multiaxial loading. Int J Fract 70:357–373

    Google Scholar 

  • Neuber H (21958, 31985) Kerbspannungslehre. Springer Verlag, Berlin

    Google Scholar 

  • Neuber H (1968) Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen. Konstruktion 20:245–251

    Google Scholar 

  • Nisitani H, Teranishi T (2004) The K I value of a circumferential crack emanating from an ellipsoidal cavity obtained by the crack tip stress method in FEM. Eng Fract Mech 71:579–585

    Google Scholar 

  • Olivier R, Ritter W (1979–1985) Wöhlerlinienkatalog für Schweißverbindungen aus Baustählen. DVS-Report 56, DVS-Verlag, Düsseldorf

    Google Scholar 

  • Olivier R, Köttgen VB, Seeger T (1989) Schweißverbindung I – Schwingfestigkeitsnachweise für Schweißverbindungen auf der Grundlage örtlicher Beanspruchungen. FKM-Forschungsheft 143, FKM, Frankfurt/M

    Google Scholar 

  • Olivier R, Köttgen VB, Seeger T (1994) Schweißverbindung II – Untersuchung zur Einbindung eines neuartigen Zeit- und Dauerfestigkeitsnachweises von Schweißverbindungen aus Stahl in Regelwerke. FKM-Forschungsheft 180, FKM, Frankfurt/M

    Google Scholar 

  • Park J, Nelson D (2000) Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life. Int J Fatigue 22:23–39

    Google Scholar 

  • Person NL (1971) Fatigue of aluminium alloy welded joints. Welding Res Suppl 50:77s–87s

    Google Scholar 

  • Pluvinage G (1997) Rupture and fatigue initiated from notches: application of the notch intensity factor (in French). Revue Francaise de Mécanique 1997-1:53–61

    Google Scholar 

  • Quian J, Hasebe N (1997) Property of eigenvalues and eigenfunctions for an interface V-notch in antiplane elasticity. Engng Fract Mech 56:729–734

    Google Scholar 

  • Radaj D (1990) Design and analysis of fatigue resistant welded structures. Abington Publ, Cambridge

    Google Scholar 

  • Radaj D (1998) Abminderungsfaktor der Schwingfestigkeit bei Schweißverbindungen. Konstruktion 50:55–62

    Google Scholar 

  • Radaj D, Helmers K (1997) Bewertung von Schweißverbindungen hinsichtlich Schwingfestigkeit nach dem Kerbspannungskonzept. Konstruktion 49:21–27

    Google Scholar 

  • Radaj D, Schilberth G (1977) Kerbspannungen an Ausschnitten und Einschlüssen. DVS-Verlag, Düsseldorf

    Google Scholar 

  • Radaj D, Vormwald M (32007) Ermüdungsfestigkeit – Grundlagen für Ingenieure. Springer Verlag, Berlin

    Google Scholar 

  • Radaj D, Zhang S (1993) Analogies between crack tip and rigid line tip stresses and displacements. Engng Fract Mech 44:913–919

    Google Scholar 

  • Radaj D, Zhang S (1994). Stress distribution at bimaterial crack tips. Engng Fract Mech 47:613–617

    Google Scholar 

  • Radaj D, Lehrke HP, Greuling S (2001) Theoretical fatigue-effective notch stresses at spot welds. Fatigue Fract Engng Mater Struct 24:293–308

    Google Scholar 

  • Radaj D, Sonsino CM, Fricke W (22006) Fatigue assessment of welded joints by local approaches. Woodhead Publ, Cambridge and CRC Press, Boca Raton Fla

    Google Scholar 

  • Radaj D, Berto F, Lazzarin P (2009(1)) Local fatigue strength parameters for welded joints based on strain energy density with inclusion of small-size notches. Engng Fract Mech 76:1109–1130

    Google Scholar 

  • Radaj D, Lazzarin P, Berto F (2009(2)) Fatigue assessment of welded joints under slit-parallel loading based on strain energy density or notch rounding. Int J Fatigue 31:1490–1504

    Google Scholar 

  • Razmjoo GR (1996) Fatigue of load-carrying fillet-welded joints under multiaxial loadings. TWI Ref 7309.02/96/909, Cambridge

    Google Scholar 

  • Rice JR (1968) A path-independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Google Scholar 

  • Savin GN (1970) Stress distribution around holes. NASA Techn Translation F-607

    Google Scholar 

  • Seweryn A (1994) Brittle fracture criterion for structures with sharp notches. Engng Fract Mech 47:673–681

    Google Scholar 

  • Seweryn A, Poskrobko S, Mróz Z (1997) Brittle fracture in plane elements with sharp notches under mixed mode loading. J Engng Mech 123:535–543

    Google Scholar 

  • Sheppard SD (1991) Field effects in fatigue crack initiation: long life fatigue strength. J Mech Design (ASME) 113:118–194

    Google Scholar 

  • Sih GC (1975) A three-dimensional strain energy density factor theory of crack propagation. In: Three-dimensional crack problems. Noordhoff, Leyden, pp 15–80

    Google Scholar 

  • Siljander A, Kurath P, Lawrence FV (1992) Non-proportional fatigue of welded structures. In: ASTM STP 1122, pp 319–338, Philadelphia Pa

    Google Scholar 

  • Smith RA (1977) On the short crack limitations of fracture mechanics. Int J Fract 13:717–720

    Google Scholar 

  • Sonsino CM (1995) Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses. Int J Fatigue 17:55–70

    Google Scholar 

  • Tanaka K (1974) Fatigue propagation from a crack inclined to the cyclic tensile axis. Engng Fract Mech 6:493–507

    Google Scholar 

  • Tanaka K, Nakai Y, Yamashita M (1981) Fatigue growth threshold of small cracks. Int J Fract 17:519–533

    Google Scholar 

  • Taylor D (1999) Geometrical effects in fatigue – A unifying theoretical model. Int J Fatigue 21:413–420

    Google Scholar 

  • Taylor D, Wang G (2000) The validation of some methods of notch fatigue analysis. Fatigue Fract Engng Mater Struct 23:387–395

    Google Scholar 

  • Verreman Y, Nie B (1996) Early development of fatigue cracking at manual fillet welds. Fatigue Fract Engng Mater Struct 19:669–681

    Google Scholar 

  • Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in tension. J Appl Mech 19:526–528

    Google Scholar 

  • Yosibash Z, Bussiba AR, Gilad I (2004) Failure criteria for brittle elastic materials. Int J Fract 125:307–333

    Google Scholar 

  • Yung JY, Lawrence FV (1986) Predicting the fatigue life of welds under combined bending and torsion. Rep no 125, UIL-ENG86-3602. Univ of Illinois, Urbana Ill

    Google Scholar 

  • Zappalorto M, Lazzarin P (2011) Strain energy based evaluations of plastic notch stress intensity factors at pointed V-notches under tension. Engng Fract Mech 78:2691–2706

    Google Scholar 

  • Zhang G, Richter B (2000) A new approach to the numerical fatigue life prediction of spot-welded structures. Fatigue Fract Engng Mater Struct 23:499–508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Radaj .

List of Symbols

A

Control volume area

a

Notch depth, hole radius, crack length

\( a^{*} ,\,a_{0}^{*} ,\,a_{{0{\text{k}}}}^{*} \)

Crack length parameters

a i

Initiated crack length

B W

Parameter, dependent on 2α and n

[B]

Strain–displacement matrix

C

Coefficient in J-integral

c W

Prestress coefficient of SED

d

Globally even FE size

d g

Grain size

{d}

Vector of nodal point displacements

[E]

Elasticity matrix

E fe, E 1

Strain energy in finite element, in local volume

E, E′

Modulus of elasticity

e 1, e 2, e 3

Total SED coefficient, mode 1, 2, 3

e d1, e d2, e d3

Distortional SED coefficient, mode 1, 2, 3

F

Parameter, dependent on 2α

F, F c

Force, critical force

f 1, f 2

Angle-dependent function related to W 1, W 2

f d1, f d2, f d3

Angle-dependent function related to W d1, W d2, W d3

f w, f w1, f w2

Peak stress coefficient, mode 1, 2

G

Shear modulus

H

Parameter, dependent on 2α and R 0/ρ

H, H τ

Hardening coefficient, tensile and shear loading

I 1, I 2

Integral over f 1, f 2

I d1, I d2, I d3

Integral over f d1, f d2, f d3

I e, I p

Integral over elastic and plastic function f 1e, f 1p

J

J-integral

J V, J L

J-integral for V-notches

K l, K 2, K 3

NSIF, mode 1, 2, 3

K le, K 3e

Elastic NSIF, mode 1, 3

K lp, K 3p

Plastic NSIF, mode 1, 3

K lE, K 3E

Endurable NSIF, mode 1, 3

K lρ , K 2ρ

Generalised NSIF, mode 1, 2

K 1c

Critical NSIF, mode 1

K I, K II, K III

SIF, mode I, II, III

\( K_{{{\text{eq}}\,}}^{{}} ,\;K_{\text{eq}}^{*} \)

Equivalent SIF, without and with T-stress

K Ic, K c

Fracture toughness

K 0

Threshold SIF

\( K_{\text{t}} ,\overline{K}_{\text{t}} \)

Theoretical SCF, fatigue-effective SCF

K t1, K t2

SCF at weld toe, weld root

K t,B, K t,vM

SCF of equivalent stress, Beltrami, von Mises

\( \overline{K}_{\text{t,B}} ,\;\overline{K}_{\text{t,vM}} \)

Fatigue-effective value of K t,B, K t,vM

K W , K t,W , K t,Wd

SED-based SCF, total, distortional

K f,N, K f,W

Fatigue notch factor, based on Neuber, on SED

k

Inverse slope exponent, SN or WN curve

m

Elastic-plastic antiplane shear exponent

N, N i, N E

Number of cycles, crack initiation, endurable value

[N]

Interpolation matrix

n

Hardening exponent

n 1, n 2

Exponent of plate thickness effect

P f, P s

Probability of failure, of survival

q

Factor on π/2 for notch internal angle

R

Load ratio, nominal stress ratio

R

Radius

R 0

Radius of integration path

R 0, R 0d

Radius of control volume for W, W d

R 01, R 03

Radius of control volume, mode 1, 3

\( R_{0} ,R_{0}^{*} \)

Radius of control volume, original, enlarged

R 1, R 2

Radii of crescent-shaped control volume

r

Polar coordinate, radial distance

r 0

Notch root distance

r p

Radius of plastic zone

s

Elastic-plastic eigenvalue dependent on λ 1 and n

s

Microstructural support factor

T

Temperature or T-stress

T σ , T W

Scatter range index, related to σ, to W

T

Traction vector in J-integral

t, t 0, t 1, t 2

Plate thickness

t

Notch depth

u 0

Remote boundary displacement, x direction

{u}, u

Displacement vector

V

Volume

v 0

Remote boundary displacement, y direction

W, W c

Total SED, critical value

W 1, W 2, W 3

Total SED, mode 1, 2, 3

W d, W d1, W d2

Distortional SED, mode 1, 2

W n, W n,n, W n,g

Nominal SED, net and gross cross-section

W 1 max

Maximum total SED, mode 1

W 1,ρ , W 1,0

Total SED, with and without microrounding

W 1d,ρ , W 1d,0

Distortional SED, with and without microrounding

\( \overline{W},\;\overline{W}_{ 1} ,\;\overline{W}_{ 2} \)

Average total SED, mode 1, 2

\( \overline{W}_{\text{d}} \)

Average distortional SED

\( \overline{W}_{\text{I}} ,\;\overline{W}_{\text{II}} \)

Average total SED, mode I, II

\( \overline{W}_{{ 1 {\text{e}}}} ,\;\overline{W}_{{ 1 {\text{p}}}} \)

Average total SED, elastic, plastic, mode 1

\( \overline{W}_{{ 3 {\text{e}}}} ,\;\overline{W}_{{ 3 {\text{p}}}} \)

Average total SED, elastic, plastic, mode 3

\( \overline{W}_{\text{c}} ,\;\overline{W}_{\text{dc}} \)

Critical average SED, total, distortional

\( W_{0}\)

Critical SED in unnotched specimen

\( \overline{W}_{\text{E}} \)

Endurable average total SED

w

Width of cross-section

w 1, w 2

Geometric parameters

x, y, z

Cartesian coordinates

Y, Y 1, Y 2

Geometry factor, mode 1, 2

α

Notch opening semi-angle

β

Notch arc related angle, coefficient in σ eq formula

γ

V-notch internal semi-angle, coefficient in σ eq formula

∆, ∆ fc, sc

Relative deviation, full circle, semicircle

δ

Gap width

δ ij

Kronecker delta

ε, ε ij {ε}

Strain, strain tensor, strain vector

ε θθ, ε rr, ε

In-plane strain components in polar coordinates

ε zz

Out-of-plane strain component

\( \theta ,\,\overline{\theta },\,\theta^{*} \)

Polar angle, crescent shape angle, transition angle

θ 0

Crack propagation angle

κ

Slope exponent

κ 1, κ 1,0

Dimensionless shape factor

κ fe

Dimensionless ratio, K 1 or K 2 related to σ p

λ 1, λ 2, λ 3

Eigenvalue at V-notch, mode 1, 2, 3

λ

Stress amplitude ratio τ a/σ a

ρ, ρ c

Notch radius, notch curvature radius

ρ f, ρ r

Radius of fictitious notch, of reference notch

\( \rho^{\ast} \)

Microstructural support length

\( \rho^{\ast} \)

Auxiliary notch tip radius

σ, σ ij, {σ}

Stress, stress tensor, stress vector

σ θθ , σ rr , σ

In-plane stress components in polar coordinates

σ θ , σ r , τ

In-plane stress components in polar coordinates

σ zz , σ z

Out-of-plane stress component

\( \tilde{\sigma }_{\theta \theta } ,\;\tilde{\sigma }_{rr} ,\;\tilde{\sigma }_{r\theta } \)

Angular functions of in-plane stresses

\( \tilde{\sigma }_{zz} \)

Angular functions of out-of-plane stress

σ kk

Sum of principal stresses

σ n, σ n,g, σ n,n

Nominal stress, in net and gross cross-section

σ l, σ u

Lower and upper nominal stress of load cycle

σ k max

Maximum notch stress

σ θ max, σ t max

Maximum tangential stress

σ a, σ A

Stress amplitude, endurable value

σ 0

Substitute yield limit, remote nominal stress

\( \overline{\sigma }_{0} ,\;\overline{\sigma }_{{0{\text{b}}}} \)

Remote stress, membrane, bending

σ Y, σ Y

Yield limit, monotonic, cyclic

σ U

Ultimate tensile strength

σ E, σ nE

Endurance limit stress, endurable nominal stress

σ eq, σ B, σ vM

Equivalent stress, Beltrami, von Mises

σ h

Hydrostatic stress

σ p, σ eq,p

Peak stress in FE mesh, equivalent peak stress

τ

Shear stress

τ a

Shear stress amplitude

τ xy

Remote shear stress

τ 0

Substitute shear yield limit, remote nominal shear stress

τ max

Maximum notch shear stress

τ E

Endurance limit shear stress

ϕ

Phase shift angle, weld toe angle

φ

Coefficient of K 1

χ h

Multiaxiality index

ψ

Inclination angle

ω, ω d

Dimensionless SED, total, distortional

\( \overline{\omega },\;\overline{\omega }_{\text{d}} \)

Dimensionless average SED, total, distortional

\( \tilde{\omega }_{ 1} \)

Auxiliary parameter, dependent on 2α

BE

Boundary element

BS

British Standard

CJ

Cruciform joint

FAT

Fatigue strength class

FE

Finite element

FEM

Finite element method

FNR

Fictitious notch rounding

IIW

International Institute of Welding

LEFM

Linear-elastic fracture mechanics

NSIF

Notch stress intensity factor

SCF

Stress concentration factor

SED

Strain energy density

SIF

Stress intensity factor

TAJ

Transverse attachment joint

cc, ec

Concentric, eccentric (reference notch)

fc, sc

Full circle, semicircle (average SED)

fm, cm

Fine mesh, coarse mesh

ns

Narrow section (average SED)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radaj, D. (2013). Local Strain Energy Density Concept. In: Advanced Methods of Fatigue Assessment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30740-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30740-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30739-3

  • Online ISBN: 978-3-642-30740-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics