Skip to main content
Log in

Advanced parameter identification for a linear-motor-driven motion system using disturbance observer

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Disturbance observer (DOB) is generally introduced into motion control systems to eliminate undesired disturbances and plant uncertainty. The DOB is also used for system identification. This work presents a novel experimental identification algorithm using disturbance observer to identify inertia, viscous coefficient, and friction of linear-motor-driven motion system. A conventionally adopted algorithm for determining the inertia of the motion system based on orthogonal relations among system responses is modified and extended to estimate the viscous coefficient and the magnitude of Coulomb friction of the underlying system. The advantages of the proposed method are high convergence rate and only one experiment needed to evaluate the system parameters. The proposed algorithm is demonstrated to be workable by both simulation and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanaka, T., Ikeda, K., Otsuka, J., Masuda, I. and Oiwa, T., “Influence of Rolling Friction in Linear Ball Guideways on Positioning Accuracy,” Int. J. of Precision Engineering and Manufacturing, Vol. 8, No. 2, pp. 85–89, 2007.

    Google Scholar 

  2. Horng, R. H., Lin, L. R. and Lee, A. C., “LuGre Model-Based Neural Network Friction Compensator in a Linear Motor Stage,” Int. J. of Precision Engineering and Manufacturing, Vol. 7, No. 2, pp. 18–24, 2006.

    Google Scholar 

  3. Ljung, L., “System Identification: Theory for the User,” Prentice-Hall, Inc., pp. 274–282, 1987.

  4. Spetch, R. and Isermann, R., “On-line Identification of Inertia, Friction and Gravitational Forces Applied to an Industrial Robot,” Proc. IFAC Symp. on Robot Control, SYROCO’88, pp. 88.1–88.6, 1988.

  5. Held, V. and Maron, C., “Estimation of Friction Characteristics, Inertial and Coupling Coefficients in Robotic Joints Based on Current and Speed Measurements,” Proc. IFAC Symp. on Robot Control, SYROCO’88, pp. 86.1–86.6, 1988.

  6. Chang, L. H. and Lee, A. C., “Design of Nonlinear Controller for Bi-axial Inverted Pendulum System,” IET Control Theory and Applications, Vol. 1, No. 4, pp. 979–986, 2007.

    Article  Google Scholar 

  7. Kim, N. J., Moon, H. S. and Hyun, D. S., “Inertial Identification for the Speed Observer of the Low Speed Control of Induction Machines,” IEEE Trans. on Industry Applications, Vol. 32, No. 6, pp. 1371–1379, 1996.

    Article  Google Scholar 

  8. Hong, S. J., Kim, H. W. and Sul, S. K., “A Novel Inertia Identification Method for Speed Control of Electric Machine,” Proc. IECON, pp. 1234–1239, 1996.

  9. Choi, J. W., Lee, S. C. and Kim, H. G., “Inertia Identification Algorithm for High-performance Speed Control of Electric Motors,” IEE Proc. of Electric Power Applications, Vol. 153, No. 3, pp. 379–386, 2006.

    Article  Google Scholar 

  10. Kim, K. H., “Nonlinear Speed Control for a PM Synchronous Motor with a Sequential Parameter Auto-tuning Algorithm,” IEE Proc. Control Theory Applications, Vol. 152, No. 5, pp. 1253–1262, 2005.

    Google Scholar 

  11. Ohnishi, K., “A New Servo Method in Mechatronics,” Trans. IEEJ Industrial Application, Vol. 107-D, pp. 83–86, 1987.

    Article  Google Scholar 

  12. Umeno, T. and Hori, Y., “Robust Speed Control of DC Servomotors Using Modern Two Degree-of-freedom Controller Design,” IEEE Trans. on Industrial Electronics, Vol. 38, No. 5, pp. 363–368, 1991.

    Article  Google Scholar 

  13. Lee, H. S. and Tomizuka, M., “Robust Motion Controller Design for High-accuracy Positioning Systems,” IEEE Trans. on Industrial Electronics, Vol. 43, No. 1, pp. 48–55, 1996.

    Article  Google Scholar 

  14. Komada, S., Machii, N. and Hori, T., “Control of redundant manipulators considering order of disturbance observer,” IEEE Trans. on Industrial Electronics, Vol. 47, No. 2, pp. 413–420, 2000.

    Article  Google Scholar 

  15. White, M. T., Tomizuka, M. and Smith, C., “Improved Track Following in Magnetic Disk Drives Using a Disturbance Observer,” IEEE/ASME Trans. on Mechanics, Vol. 5, No. 1, pp. 3–11, 2000.

    Article  Google Scholar 

  16. Shahruz, S. M., “Performance Enhancement of a Class of Nonlinear Systems by Disturbance Observers,” IEEE/ASME Trans. on Mechanics, Vol. 5, No. 3, pp. 319–323, 2000.

    Article  MathSciNet  Google Scholar 

  17. Iwasaki, M., Shibata, T. and Matsui, N., “Disturbance-observer-based Nonlinear Friction Compensation in Table Drive System,” IEEE/ASME Trans. on Mechatronics, Vol. 4, No. 1, pp. 3–8, 1999.

    Article  Google Scholar 

  18. Horng, R. H., Chou, H. L. and Lee, A. C., “Rejection of Limit Cycles Induced from Disturbance Observers in Motion Control,” IEEE Trans. on Industrial Electronics, Vol. 53, No. 6, pp. 1770–1780, 2006.

    Article  Google Scholar 

  19. Choi, S. H., Ko, J. S., Kim, I. D., Park, J. S. and Hong, S. C., “Precise Position Control Using a PMSM with a Disturbance Observer Containing a System Parameter Compensator,” IEE Proc.-Control Theory Application, Vol. 152, No. 6, pp. 1573–1577, 2005.

    Google Scholar 

  20. Lee, K. B., “Disturbance Observer that uses Radial Basis Function Networks for the Low Speed Control of a Servo Motor,” IEE Proc.-Control Theory Application, Vol. 152, No. 2, pp. 118–124, 2005.

    Article  MathSciNet  Google Scholar 

  21. Danesh, M., Sheikholeslam, F. and Keshmiri, M., “An Adaptive Manipulator Controller Based on Force and Parameter Estimation,” IEICE Trans. Fundamentals of Electronic Communications and Computer Sciences, Vol. E89-A, No. 10, pp. 2803–2811, 2006.

    Article  Google Scholar 

  22. Huang, Y. Y., Horng, R. H., Shih, Y. T. and Lee, A. C., “Dual-Position-Controller Design for the Linear-Motor-Driven Motion System,” Journal of System Design and Dynamics, Vol. 1, No. 2, pp. 270–282, 2007.

    Article  Google Scholar 

  23. Katsura, S., Matsumoto, Y. and Ohnishi, K., “Modeling of Force Sensing and Validation of Disturbance Observer for Force Control,” IEEE Trans. on Industrial Electronics, Vol. 54, No. 1, pp. 530–538, 2007.

    Article  Google Scholar 

  24. Su, W. T. and Liaw, C. M., “Adaptive Positioning Control for a LPMSM Drive Based on Adapted Inverse Model and Robust Disturbance Observer,” IEEE Trans. on Power Electronics, Vol. 21, No. 2, pp. 505–517, 2006.

    Article  Google Scholar 

  25. Bertoluzzo, M., Buja, G. S. and Stampacchia, E., “Performance Analysis of a High-Bandwidth Torque Disturbance Compensator,” IEEE/ASME Trans. on Mechatronics, Vol. 9, No. 4, pp. 653–660, 2004.

    Article  Google Scholar 

  26. Han, S. I., “Disturbance Observer-Based Sliding Mode Control for the Precise Mechanical System with the Bristle Friction Model,” IJPEM, Vol. 4, No. 5, pp. 5–14, 2003.

    Google Scholar 

  27. Kobayashi, S., Awaya, I., Kuromaru, H. and Oshitani, K., “Dynamic Model Based Auto-tuning Digital Servo Driver,” IEEE Trans. on Industrial Electronics, Vol. 42, No. 5, pp. 462–466, 1995.

    Article  Google Scholar 

  28. Danaher Motion Company, “Kollmorgen: Platinum Ddl and Servostar setup Guide,” Danaher Motion Company, Document No. M-LN-016-0702, 2002.

  29. Edward, P. C., “Digital Filtering: An Introduction,” Houghton Mifflin Co., pp. 479–483, 1992.

  30. Choi, H. T., Kim, B. K., Suh, I. H. and Chung, W. K., “Design of Robust High-speed Motion Controller for a Plant with Actuator Saturation,” ASME J. of Dynamic Systems, Measurement and Control, Vol. 122, No. 3, pp. 535–541, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Chen Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, YR., Shih, YT., Horng, RH. et al. Advanced parameter identification for a linear-motor-driven motion system using disturbance observer. Int. J. Precis. Eng. Manuf. 10, 35–47 (2009). https://doi.org/10.1007/s12541-009-0069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-009-0069-1

Keywords

Navigation