Skip to main content
Log in

Fixed-Time Disturbance Observer-Based Control for Uncertainty Systems Applied to Permanent-Magnet Speed Control

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

For a class of uncertain systems, a fixed-time disturbance observer is suggested. The proposed observer not only estimated the disturbance but also ensured the fixed-time convergence, leading to the increased accuracy of the disturbance estimation together with the improved estimation speed. Taking the proposed observer in combination with a state-feedback controller and employing it in a fully actuated system, stabilization of the closed-loop system will be assured which allows the control of uncertain systems. With a numerical example to illustrate the efficacy of the scheme, finally, such scheme is successfully applied to the permanent-magnet speed control system, the results show that it has the advantages of rapid convergence speed and favorable control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The sharing of data is not appropriate in this paper as the study did not involve the creation or analysis of new data.

References

  1. Parivallal A, Sakthivel R, Wang C (2023) Guaranteed cost leaderless consensus for uncertain Markov jumping multi-agent systems. J Exp Theor Artif In 35(2):257–273. https://doi.org/10.1080/0952813X.2021.1960631

    Article  Google Scholar 

  2. Sakthivel R, Rathika M, Santra S, Zhu QX (2015) Dissipative reliable controller design for uncertain systems and its application. Appl Math Comput 263:107–121. https://doi.org/10.1016/j.amc.2015.04.009

    Article  MathSciNet  Google Scholar 

  3. Xu JQ, Du YT, Chen YH, Guo H (2018) Optimal robust control design for constrained uncertain systems: a fuzzy-set theoretic approach. IEEE T Fuzzy Syst 26(6):3494–3505. https://doi.org/10.1109/TFUZZ.2018.2834320

    Article  Google Scholar 

  4. Yang J, Chen WH, Li SH (2011) Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory A 5(18):2053–2062. https://doi.org/10.1049/iet-cta.2010.0616

    Article  MathSciNet  Google Scholar 

  5. Ginoya D, Shendge PD, Phadke SB (2013) Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE T Ind Electron 61(4):1983–1992. https://doi.org/10.1109/TIE.2013.2271597

    Article  Google Scholar 

  6. Ding SH, Chen WH, Mei KQ, Murray-Smith DJ (2019) Disturbance observer design for nonlinear systems represented by input–output models. IEEE T Ind Electron 67(2):1222–1232. https://doi.org/10.1109/TIE.2019.2898585

    Article  Google Scholar 

  7. Wang B, Yu X, Mu LX, Zhang YM (2019) Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances. Mech Syst Signal Pr 120:727–743. https://doi.org/10.1016/j.ymssp.2018.11.001

    Article  Google Scholar 

  8. Wang X, Guo J, Tang SJ, Qi S (2019) Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle. ISA T 88:233–245. https://doi.org/10.1016/j.isatra.2018.12.013

    Article  Google Scholar 

  9. Zhao ZJ, He XY, Ahn CK (2019) Boundary disturbance observer-based control of a vibrating single-link flexible manipulator. IEEE T Syst Man Cy-S 51(4):2382–2390. https://doi.org/10.1109/TSMC.2019.2912900

    Article  Google Scholar 

  10. Chen WH, Yang J, Guo L, Li SH (2015) Disturbance-observer-based control and related methods—an overview. IEEE T Ind Electron 63(2):1083–1095. https://doi.org/10.1109/TIE.2015.2478397

    Article  Google Scholar 

  11. Elkayam M, Kolesnik S, Kuperman A (2018) Guidelines to classical frequency-domain disturbance observer redesign for enhanced rejection of periodic uncertainties and disturbances. IEEE T Power Electr 34(4):3986–3995. https://doi.org/10.1109/TPEL.2018.2865688

    Article  Google Scholar 

  12. Zheng MH, Lyu XM, Liang X, Zhang F (2020) A generalized design method for learning-based disturbance observer. IEEE/ASME T Mech 26(1):45–54. https://doi.org/10.1109/TMECH.2020.2999340

    Article  Google Scholar 

  13. Guerrero J, Torres J, Creuze V, Chemori A (2020) Adaptive disturbance observer for trajectory tracking control of underwater vehicles. Ocean Eng 200:107080. https://doi.org/10.1016/j.oceaneng.2020.107080

    Article  Google Scholar 

  14. Yao XM, Zhu LQ, Guo L (2014) Disturbance-observer-based control & H∞ control for non-linear Markovian jump singular systems with multiple disturbances. IET Control Theory A 8(16):1689–1697. https://doi.org/10.1049/iet-cta.2014.0324

    Article  Google Scholar 

  15. Vu VP, Wang WJ (2018) Observer-based controller synthesis for uncertain polynomial systems. IET Control Theory A 12(1):29–37. https://doi.org/10.1049/iet-cta.2017.0489

    Article  MathSciNet  Google Scholar 

  16. Yang J, Li SH, Su JY, Yu XH (2013) Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7):2287–2291. https://doi.org/10.1016/j.automatica.2013.03.026

    Article  MathSciNet  Google Scholar 

  17. Wang N, Qian CJ, Sun JC, Liu YC (2015) Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE T Contr Syst T 24(4):1454–1462. https://doi.org/10.1109/TCST.2015.2496585

    Article  Google Scholar 

  18. Mokhtari MR, Cherki B, Braham AC (2017) Disturbance observer based hierarchical control of coaxial-rotor UAV. ISA T 67:466–475. https://doi.org/10.1016/j.isatra.2017.01.020

    Article  Google Scholar 

  19. Zhang Y, Hua CC, Li K (2019) Disturbance observer-based fixed-time prescribed performance tracking control for robotic manipulator. Int J Syst Sci 50(13):2437–2448. https://doi.org/10.1080/00207721.2019.1622818

    Article  MathSciNet  ADS  Google Scholar 

  20. Wu CH, Yan JG, Lin H, Wu XW, Xiao B (2021) Fixed-time disturbance observer-based chattering-free sliding mode attitude tracking control of aircraft with sensor noises. Aerosp Sci Technol 111:106565. https://doi.org/10.1016/j.ast.2021.106565

    Article  Google Scholar 

  21. Ni JK, Liu L, Chen M, Liu CX (2017) Fixed-time disturbance observer design for Brunovsky systems. IEEE T Circuits-II 65(3):341–345. https://doi.org/10.1109/TCSII.2017.2710418

    Article  Google Scholar 

  22. Tian BL, Lu HC, Zuo ZY, Wang H (2018) Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dynam 94:2889–2899. https://doi.org/10.1007/s11071-018-4532-3

    Article  Google Scholar 

  23. Wang Y, Chen MS (2022) Fixed-time disturbance observer-based sliding mode control for mismatched uncertain systems. Int J Control Autom 20(9):2792–2804. https://doi.org/10.1007/s12555-021-0097-x

    Article  Google Scholar 

  24. Tian GT, Duan GR (2023) Robust model reference tracking for uncertain second-order nonlinear systems with application to robot manipulator. Int J Robust Nonlin 33(3):1750–1771. https://doi.org/10.1002/rnc.6450

    Article  MathSciNet  Google Scholar 

  25. Zhang L, Liu QZ, Fan GW, Lv XY, Gao Y, Xiao Y (2022) Parametric control for flexible spacecraft attitude maneuver based on disturbance observer. Aerosp Sci Technol 130:107952. https://doi.org/10.1016/j.ast.2022.107952

    Article  Google Scholar 

  26. Zhang DW, Liu GP, Cao L (2023) Proportional integral predictive control of high-order fully actuated networked multiagent systems with communication delays. IEEE T Syst Man Cy-S 53(2):801–812. https://doi.org/10.1109/TSMC.2022.3188504

    Article  Google Scholar 

  27. Zhang DW, Liu GP, Cao L (2023) Predictive control of discrete-time high-order fully actuated systems with application to air-bearing spacecraft simulator. J Franklin I 360(8):5910–5927. https://doi.org/10.1016/j.jfranklin.2023.04.003

    Article  MathSciNet  Google Scholar 

  28. Gu DK, Wang S (2022) A high-order fully actuated system approach for a class of nonlinear systems. J Syst Sci Complex 35(2):714–730. https://doi.org/10.1007/s11424-022-2041-4

    Article  MathSciNet  Google Scholar 

  29. Duan GR (2022) High-order fully actuated system approaches: Part VIII. optimal control with application in spacecraft attitude stabilization. Int J Syst Sci 53(1):54–73. https://doi.org/10.1080/00207721.2021.1937750

  30. Dai X, Liang QH, Cao JY, Long YJ, Mo JQ, Wang SG (2015) Analytical modeling of axial-flux permanent magnet eddy current couplings with a slotted conductor topology. IEEE T Magn 52(2):1–15. https://doi.org/10.1109/TMAG.2015.2493139

    Article  CAS  Google Scholar 

  31. Aberoomand V, Mirsalim M, Fesharakifard R (2018) Design optimization of double-sided permanent-magnet axial eddy-current couplers for use in dynamic applications. IEEE T Energy Conver 34(2):909–920. https://doi.org/10.1109/TEC.2018.2880679

    Article  ADS  Google Scholar 

  32. Wang DZ, Wang SH, Kong DS, Wang JX, Li WH, Pecht M (2023) Physics-informed sparse neural network for permanent magnet eddy current device modelling and analysis. IEEE Magn Lett 14:1–5. https://doi.org/10.1109/LMAG.2023.3288388

    Article  Google Scholar 

  33. Wang JX, Wang DZ, Wang SH, Tong TL, Sun LS, Li WH, Kong DS, Hua Z, Sun GF (2023) A review of recent developments in permanent magnet eddy current couplers technology. Actuators 12(7):277. https://doi.org/10.3390/act12070277

    Article  Google Scholar 

  34. Sun LS, Wang DZ, Ni YL, Song KL, Qi YF, Li YM (2023) Design of permanent-magnet eddy-current coupler speed control system based on fully-actuated system model[C]. In: Proc 2nd Conf Fully Actuated Syst Theory Appl, IEEE, Qingdao, China. https://doi.org/10.1109/CFASTA57821.2023.10243284

  35. Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulators. IEEE T Ind Electron 47(4):932–938. https://doi.org/10.1109/41.857974

    Article  Google Scholar 

  36. Yang J, Chen WH, Li SH (2010) Autopilot design of bank-to-turn missiles using state-space disturbance observers[C]. In: Proc UKACC Int Conf Contr, IET, Coventry, U.K. https://doi.org/10.1049/ic.2010.0454

  37. Engel R, Kreisselmeier G (2002) A continuous-time observer which converges in finite time. IEEE T Automat Contr 47(7):1202–1204. https://doi.org/10.1109/TAC.2002.800673

    Article  MathSciNet  Google Scholar 

  38. Duan GR (2014) Parametric solutions to fully-actuated generalized Sylvester equations—the nonhomogeneous case[C]. In: Proc 33rd Chinese Contr Conf, IEEE, Nanjing, China. https://doi.org/10.1109/ChiCC.2014.6895584

  39. Li SH, Yang J, Chen WH, Chen XS (2014) Disturbance observer-based control: methods and applications[C]. CRC Press, Florida, USA

    Google Scholar 

  40. Zhu P, Chen SH, Zhang J, You XW (2021) Linearized feedback control of PMSM based on disturbance observer. RADAR & ECM 41(1):50–53 (in Chinese). https://doi.org/10.19341/j.cnki.issn.1009-0401.2021.01.013

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 52077027, and in part by the Department of Science and Technology of Liaoning province under Grant 2020020304-JH1/101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Song Sun.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DZ., Sun, LS. & Sun, GF. Fixed-Time Disturbance Observer-Based Control for Uncertainty Systems Applied to Permanent-Magnet Speed Control. J. Electr. Eng. Technol. (2024). https://doi.org/10.1007/s42835-024-01836-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42835-024-01836-5

Keywords

Navigation