Skip to main content
Log in

Abstract

Frictional force is a resistant force that must be overcome to achieve relative motion between two components in contact. The economical and technological benefits of controlling friction and wear are tremendous. However, due to the complex nature of the phenomena, clear understanding of the mechanisms are yet to be achieved, particularly at the nano-scale where surface forces tend to dominate the tribological behavior of the system. In this paper the results of numerous theoretical, experimental, and numerical works on the fundamental mechanisms of friction at the nano-scale are reviewed. It is shown that friction coefficient values for nano-scale systems are quite varied depending on the conditions under which the system is investigated. As for the mechanism that causes friction at the nano-scale, interaction of the atoms plays a vital role. Furthermore, factors such as atomic radius, interatomic potential energy, and lattice parameters contribute to the degree of atomic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stachowiak, G. W. and Batchelor, A. W., “Engineering tribology,” Butterworth-Heinemann, pp. 1–9, 2000.

  2. Bhushan, B., “Principles and applications of tribology,” John Wiley & Sons, Inc, 1999.

  3. Jost, H. P., “Tribology - origin and future,” Wear, Vol. 136, No. 1, pp. 1–17, 1990.

    Article  Google Scholar 

  4. Meyer, E., Overney, R. M., Dransfeld, K. and Gyalog, T., “Nanoscience: friction and rheology on the nanometer scale,” World Scientific, pp. 1–28, 2002.

  5. Suh, N. P., “The Genesis of Friction,” Wear, Vol. 69, No. 1, pp. 91–114, 1981.

    Article  MathSciNet  Google Scholar 

  6. VenKatachalam, S. and Liang, S. Y., “Effects of ploughing forces and friction coefficient in microscale machining,” J. Manuf. Sci. Eng., Vol. 12, No. 2, pp. 274–280, 2007.

    Article  Google Scholar 

  7. Liu, Z., Sun, J. and Shen, W., “Study of plowing and friction at the surfaces of plastic deformed metals,” Tribol. Int., Vol. 35, No. 8, pp. 511–522, 2002.

    Article  Google Scholar 

  8. Houston, J. E. and Kim, H. I., “Adhesion, friction, and mechanical properties of functionalized alkanethiol selfassembled monolayers,” Acc. Chem. Res., Vol. 35, No. 7, pp. 547–553, 2002.

    Article  Google Scholar 

  9. Tambe, N. S. and Bhushan, B., “Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants,” Nanotechnology, Vol. 15, No. 11, pp. 1561–1570, 2004.

    Article  Google Scholar 

  10. Sung, I.-H., Lee, H.-S. and Kim, D.-E., “Effect of surface topography on the frictional behavior at the micro/nano-scale,” Wear, Vol. 254, No. 10, pp. 1019–1031, 2003.

    Article  Google Scholar 

  11. Bhushan, B., “Nanotribology and nanomechanics of MEMS/ NEMS and BioMEMS/BioNEMS materials and devices,” Microelectron. Eng., Vol. 84,Issue 3, pp. 387–412, 2007.

    Article  Google Scholar 

  12. Fan, L.-S., Tai, Y.-C. and Muller, R. S., “Integrated Movable Micromechanical Structures for Sensors and Actuators,” IEEE Trans. Electron Devices, Vol. 15, No. 6, pp. 724–730, 1988.

    Article  Google Scholar 

  13. McFadyen, I. R., Fullerton, E. E. and Carey, M. J., “State-of-the-art magnetic hard disk drives,” MRS Bull., Vol. 31, pp. 379–383, 2006.

    Google Scholar 

  14. Wang, R.-H. and Nayak, U. V., “Head-disk interface considerations at 10-nm flying height,” IEEE Trans. Magn., Vol. 38, No. 2, pp. 2132–2134, 2002.

    Article  Google Scholar 

  15. Lee, S.-C. and Polycarpou, A. A., “Effect of hard-disk drive spindle motor vibration on dynamic microwaviness and flyingheight modulation,” Tribol. Int., Vol. 38, No. 6–7, pp. 665–674, 2005.

    Article  Google Scholar 

  16. Kim, D. E., Chung, K. H. and Cha, K. H., “Tribological design methods for minimum surface damage of HDD slider,” Tribol. Int., Vol. 36, No. 4–6, pp. 467–473, 2003.

    Article  Google Scholar 

  17. Tan, A. H. and Cheng, S. W., “A novel textured design for hard disk tribology improvement,” Tribol. Int., Vol. 39, No. 6, pp. 506–511, 2006.

    Article  Google Scholar 

  18. Jianbin, L., Shizhu, W., Li, L. K. Y. and Wong, P. L., “Progresses and problems in nano-tribology,” Chin. Sci. Bull., Vol. 43, No. 5, pp. 369–378, 1998.

    Article  Google Scholar 

  19. Hirano, M., “Atomistics of friction,” Surf. Sci. Rep., Vol. 60,Issue 8, pp. 159–201, 2006.

    Article  Google Scholar 

  20. Persson, B. N. J., Sivebaek, I. M., Samoilov, V. N., Zhao, K., Volokitin, A. I. and Zhang, Z., “On the origin of Amonton’s friction law,” J. Phys.: Condens. Matter, Vol. 20,Issue 39, pp. 1–11, 2008.

    Google Scholar 

  21. Tomlinson, G. A., “A molecular theory of friction,” Philos. Mag. Vol. 7, No. 46, pp. 905–939, 1929.

    Google Scholar 

  22. Dienwiebel, M., Verhoeven, G. S., Pradeep, N. and Frenken, J. W. M., “Superlubricity of Graphite,” Phys. Rev. Lett., Vol. 92, No. 12, pp. 126101-1–126101-4, 2004.

    Article  Google Scholar 

  23. Muser, M. H., “Structural lubricity: Role of dimension and symmetry,” Europhys. Lett., Vol. 66, No. 1, pp. 97–103, 2004.

    Article  Google Scholar 

  24. Weiss, M. and Elmer, F.-J., “Dry friction in the Frenkel-Kontorova-Tomlinson model: Static properties,” Phys. Rev. B, Vol. 53, No. 11, pp. 7539–7549, 1996.

    Article  Google Scholar 

  25. Kontorova, T. and Frenkel, Y. I., “On the theory of the plastic deformation and twinning,” Zh. Eksp. Teor. Fiz., Vol. 8, pp. 89–95, 1938.

    Google Scholar 

  26. Mansfield, M. and Needs, R. J., “Application of the Frenkel-Kontorova model to surface reconstructions,” J. Phy.: Condens. Matter, Vol. 2, No. 10, pp. 2361–2374, 1990.

    Article  Google Scholar 

  27. Weiss, M. and Elmer, F.-J., “Dry friction in the Frenkel-Kontorova-Tomlinson model: Static properties,” Phys. Rev. B, Vol. 53, No. 11, pp. 7539–7549, 1996.

    Article  Google Scholar 

  28. Gyalog, T. and Thomas, H., “Friction between atomically flat surfaces,” Europhys. Lett., Vol. 37, No. 3, pp. 195–200, 1997.

    Article  Google Scholar 

  29. Bowden, F. P. and Tabor, D., “The friction and Lubrication of Solids,” Oxford: Clarendon Press, pp. 78–89, 2001.

    MATH  Google Scholar 

  30. Mate, C. M., McClelland, G. M., Erlandsson, R. and Chiang, S., “Atomic-scale friction of a tungsten tip on a graphite surface,” Phys. Rev. Lett., Vol. 59, No. 17, pp. 1942–1945, 1987.

    Article  Google Scholar 

  31. Akamine, S., Barrett, R. C. and Quate, C. F., “Improved atomic force microscope images using microcantilevers with sharp tips,” Appl. Phys. Lett., Vol. 57, No. 3, pp. 316–318, 1990.

    Article  Google Scholar 

  32. Fujisawa, S., Sugawara, Y., Ito, S., Mishima, S., Okada, T. and Morita, S., “The two-dimensional stick-slip phenomenon with atomic resolution,” Nanotechnology, Vol. 4, No. 3, pp. 138–142, 1993.

    Article  Google Scholar 

  33. Ruan, J.-A. and Bhushan, B., “Frictional behavior of highly oriented pyrolytic graphite,” J. Appl. Phys., Vol. 76, No. 12, pp. 8117–8120, 1994.

    Article  Google Scholar 

  34. Jiang, Z., Lu, C.-J., Bogy, D. B., Bhatia, C. S. and Miyamoto, T., “Nanotribological characterization of hydrogenated carbon films by scanning probe microscopy,” Thin Solid Films, Vol. 258,Issues 1–2, pp. 75–81, 1995.

    Article  Google Scholar 

  35. Bhushan, B. and Li, X., “Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices,” J. Mater. Res., Vol. 12, No. 1, pp. 54–63, 1997.

    Article  Google Scholar 

  36. Bhushan, B. and Kulkarni, A. V., “Effect of normal load on microscale friction measurements,” Thin Solid Films, Vol. 278,Issue 1, pp. 49–56, 1996.

    Article  Google Scholar 

  37. Tambe, N. S. and Bhushan, B., “Friction model for the velocity dependence of nanoscale friction,” Nanotechnology, Vol. 16, No. 10, pp. 2309–2324, 2005.

    Article  Google Scholar 

  38. Bhushan, B. and Sundararajan, S., “Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy,” Acta Mater., Vol. 46, No. 11, pp. 3793–3804, 1998.

    Article  Google Scholar 

  39. Nair, R. P. and Zou, M., “Surface-nano-texturing by aluminuminduced crystalliuzation of amorphous silicon,” Surf. Coat. Technol., Vol. 203,Issues 5–7, pp. 675–679, 2008.

    Article  Google Scholar 

  40. Chung, K.-H., Jang, C.-E. and Kim, D.-E., “Wear characteristics of microscopic bushings for MEMS applications investigated by an AFM,” J. Micromech. Microeng., Vol. 17, No. 9, pp. 1877–1887, 2007.

    Article  Google Scholar 

  41. Chung, K.-H., Lee, Y.-H., Kim, Y.-T., Kim, D.-E., Yoo, J. and Hong, S., “Nano-tribological characteristics of PZT thin film investigated by atomic force microscopy,” Surf. Coat. Technol., Vol. 201,Issue 18, pp. 7983–7991, 2007.

    Article  Google Scholar 

  42. Chung, K.-H., Kim, H.-J., Lin, L.-Y. and Kim, D.-E., “Tribological characteristics of ZnO nanowires investigated by atomic force microscope,” Appl. Phys. A, Vol. 92, No. 2, pp. 267–274, 2008.

    Article  Google Scholar 

  43. Frenkel, D. and Smit, B., “Understanding Molecular Simulation: From Algorithms to Applications,” Academic Press, pp. 63–64, 2001.

  44. Friesner, R. A., “Ab initio quantum chemistry: Methodology and applications,” Proc. Natl. Acad. Sci. USA., Vol. 102, No. 19, pp. 6648–6653, 2005.

    Article  Google Scholar 

  45. Sham, T.-L. and Tichy, J., “A scheme for hybrid molecular dynamics/finite element analysis of thin film lubrication,” Wear, Vol. 207, No. 1, pp. 100–106, 1997.

    Article  Google Scholar 

  46. Kim, D. E. and Suh, N. P., “Molecular Dynamics Investigation of Two-Dimensional Atomic-Scale Friction,” J. Tribol., Vol. 116, No. 2, pp. 225–231, 1994.

    Article  Google Scholar 

  47. Sorensen, M. R., Jacobsen, K. W. and Stoltze, P., “Simulations of atomic-scale sliding friction,” Phys. Rev. B, Vol. 53, No. 4, pp. 2101–2113, 1996.

    Article  Google Scholar 

  48. Lia, B., Clapp, P. C., Rifkin, J. A. and Zhang, X. M., “Molecular dynamics simulation of stick-slip,” J. Appl. Phys., Vol. 90, No. 6, pp. 3090–3094, 2001.

    Article  Google Scholar 

  49. Belak, J. and Stowers, I. F., “A molecular dynamics model of the orthogonal cutting process,” Proc. ASPE Annu. Conf., pp. 76–79, 1990.

  50. Cagin, T., Che, J., Gardos, M. N., Fijany, A. and Goddard, W. A. III, “Simulation and experiments on friction and wear of diamond: a material for MEMS and NEMS application,” Nanotechnology, Vol. 10, No. 3, pp. 278–284, 1999.

    Article  Google Scholar 

  51. Komanduri, R., Chandrasekaran, N. and Raff, L. M., “MD simulation of indentation and scratching of single crystal aluminum,” Wear, Vol. 240, No. 1–2, pp. 113–143, 2000.

    Article  Google Scholar 

  52. Wu, H., Lin, B., Yu, S. Y. and Zhu, H. T., “Molecular Dynamics Simulation on the Mechanism of Nanometric Machining of Single-crystal Silicon,” Mater. Sci. Forum, Vol. 471–472, pp. 144–148, 2004.

    Article  Google Scholar 

  53. Yang, J. and Komvopoulos, K., “A Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects on Atomic-Sclae Friction,” J. Tribol., Vol. 127,Issue 3, pp. 513–521, 2005.

    Article  Google Scholar 

  54. Tupper, K. J. and Brenner, D. W., “Molecular dynamics simulations of friction in self-assembled monolayers,” Thin Solid Films, Vol. 253, No. 1–2, pp. 185–189, 1994.

    Article  Google Scholar 

  55. Lan, H. and Zhang, S., “Molecular dynamics simulation on nanotribological properties of molecular deposition film during the scan process,” Tribol. Int., Vol. 37, No. 8, pp. 661–665, 2004.

    Article  Google Scholar 

  56. Zhang, L. and Jiang, S., “Molecular simulation study of nanoscale friction for alkyl monolayers on Si(111),” J. Chem. Phys., Vol. 117, No. 4, pp. 1804–1811, 2002.

    Article  MathSciNet  Google Scholar 

  57. Tanaka, K., Kato, T. and Matsumoto, Y., “Molecular Dynamics Simulation of Vibrational Friction Force Due to Molecular Deformation in Confined Lubricant Film,” J. Tribol., Vol. 125, No. 3, pp. 587–591, 2003.

    Article  Google Scholar 

  58. Sung, I.-H. and Kim, D.-E., “Molecular dynamics simulation study of the nano-wear characteristics of alkanethiol selfassembled monolayers,” Appl. Phys. A, Vol. 81, No. 1, pp. 109–114, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Kim, DE. Nano-scale friction: A review. Int. J. Precis. Eng. Manuf. 10, 141–151 (2009). https://doi.org/10.1007/s12541-009-0039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-009-0039-7

Keywords

Navigation