Skip to main content
Log in

Effect of a Stress Relief Heat Treatment of AlSi7Mg and AlSi10Mg Alloys on Mechanical and Electrical Properties According to Silicon Precipitation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) as an additive manufacturing (AM) technique shows great potential to produce complex and high-density three-dimensional structures at high speeds. Currently, alloy materials based on aluminum–silicon (AlSi), including AlSi7Mg and AlSi10Mg, are widely used in AM technology. However, the residual stress caused by rapid cooling was one of the critical issues affecting the tensile and yield strength, dimensional accuracy, and reliability of fabricated parts. In this study, we systematically investigated changes in the microstructure, residual stress, and mechanical properties of AlSi7Mg and AlSi10Mg materials after a heat treatment. The changes in electrical properties were also investigated. The heat treatment process reduced the residual stress of the materials. After the heat treatment, the silicon (Si) network structure and Si dissolved in the Al matrix were completely precipitated and existed as an independent fine spherical precipitate. The AlSi7Mg material has a weaker solid-solution hardening effect due to lower volume fraction of Si, resulting in lower tensile strength, lower hardness, and higher elongation than the AlSi10Mg material. After the heat treatment, the tensile and yield strength of both materials decreased, and the elongation increased. On the other hand, the electrical conductivity of the materials was improved after the heat treatment due to the Si which precipitated in the Al matrix, acting as an impurity. The electrical conductivity and mechanical properties of the AlSi alloy depend on the Si content of the materials. Therefore, the electrical and mechanical properties can be enhanced by optimizing the appropriate Si content in the material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.P. Oliveira, A.D. LaLonde, J. Ma, Mater. Des. 193, 108762 (2020)

    Article  CAS  Google Scholar 

  2. T. Furumoto, K. Egashira, K. Munekage, S. Abe, CIRP Ann. 67, 253 (2018)

    Article  Google Scholar 

  3. A.J. Knowles, X. Jiang, M. Galano, F. Audebert, J. Alloys Compd. 615, 401 (2014)

    Article  Google Scholar 

  4. J.L. Leirmo, CIRP 104, 1747 (2021)

    Article  Google Scholar 

  5. M.Y. Murashkin, I. Sabirov, V.U. Kazykhanov, E.V. Bobruk, A.A. Dubravina, R.Z. Valiev, J. Mater. Sci. 48, 4501 (2013)

    Article  CAS  Google Scholar 

  6. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, Prog. Mater. Sci. 106, 100578 (2019)

    Article  CAS  Google Scholar 

  7. M.I.M. Sargini, S.H. Masood, S. Palanisamy, E. Jayamani, A. Kapoor, Mater. Today Proc. 45, 4601 (2021)

    Article  CAS  Google Scholar 

  8. O. Diegel, J. Schutte, A. Ferreira, Y.L. Chan, Addit. Manuf. 36, 101446 (2020)

    CAS  Google Scholar 

  9. G.P. Sage, 3D printed waveguide slot array antennas. IEEE Access 4, 1258 (2016)

    Article  Google Scholar 

  10. D. Jia, F. Li, Y. Zhang, Sci. Rep. 10, 600 (2020)

    Article  CAS  Google Scholar 

  11. L. Brock, I. Ogunsanya, H. Asgari, S. Patel, M. Vlasea, JMEPEG 30, 760 (2021)

    Article  CAS  Google Scholar 

  12. A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva, S.C. Veldhuis, Addit. Manuf. 21, 234 (2018)

    CAS  Google Scholar 

  13. M. Wang, B. Song, Q. Wei, Y. Zhang, Y. Shi, Mater. Sci. Eng. A 739, 463 (2019)

    Article  CAS  Google Scholar 

  14. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, Y. Shi, Mater. Sci. Eng. A 663, 116 (2016)

    Article  CAS  Google Scholar 

  15. N.E. Uzan, R. Shnecka, O. Yeheskelb, N. Frage, Addit. Manuf. 24, 257 (2018)

    CAS  Google Scholar 

  16. N.V. Dynin, V.V. Antipov, D.V. Khasikov, I. Benarieb, A.V. Zavodov, A.G. Evgenov, Mater. Lett. 284, 128898 (2021)

    Article  CAS  Google Scholar 

  17. J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci. Technol. 35, 270 (2019)

    Article  CAS  Google Scholar 

  18. X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, Acta Mater. 95, 74 (2015)

    Article  CAS  Google Scholar 

  19. J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto, Acta Mater. 117, 311 (2016)

    Article  CAS  Google Scholar 

  20. B. Amir, E. Grinberg, Y. Gale, O. Sadot, S. Samuha, Mater. Sci. Eng. A 822, 141612 (2021)

    Article  CAS  Google Scholar 

  21. A. Tridello, J. Fiocchi, C.A. Biffi, G. Chiandussi, M. Rossetto, A. Tuissi, D.S. Paolino, Int. J. Fatigue 137, 105659 (2020)

    Article  CAS  Google Scholar 

  22. T. Chen, L. Wang, S. Tan, Mod. Phys. Lett. B 30, 1650255 (2016)

    Article  CAS  Google Scholar 

  23. G.B. Bang, W.R. Kim, H.K. Kim, H.K. Park, G.H. Kim, S.K. Hyun, O.Y. Kwon, H.G. Kim, Mater. Sci. Eng. A 841, 143020 (2022)

    Article  CAS  Google Scholar 

  24. L. Chen, H. Li, S. Liu, S. Shen, T. Zhang, Y. Huang, G. Zhang, Y. Zhang, B. He, C. Yang AIP Adv. 9, 045012 (2019)

    Article  Google Scholar 

  25. G.B. Bang, W.R. Kim, H.K. Kim, H.K. Park, G.H. Kim, S.K. Hyun, O.Y. Kwon, H.G. Kim, Mater. Des. 197, 109221 (2021)

    Article  CAS  Google Scholar 

  26. A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva, S.C. Veldhuis, Addit. Manuf. 21, 231 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the 3D printing manufacturing innovation demonstration project(D0714-22-1003) of the National IT Industry Promotion Agency (NIPA) grant funded by Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Choa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, W.J., Bang, G.B. & Choa, SH. Effect of a Stress Relief Heat Treatment of AlSi7Mg and AlSi10Mg Alloys on Mechanical and Electrical Properties According to Silicon Precipitation. Met. Mater. Int. 29, 1311–1322 (2023). https://doi.org/10.1007/s12540-022-01304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01304-7

Keywords

Navigation