Skip to main content
Log in

Effect of Texture and Microstructure on Tensile Behaviors in the Polycrystalline Pure Niobium

  • Published:
Metals and Materials International Aims and scope Submit manuscript

This article has been updated

Abstract

Pure polycrystalline niobium had different texture and microstructure due to the RCD-60, RCD-84 and CD-84 fabrication processes and recrystallization at 1000 °C for 2 h. The tensile behaviors and texture evolutions of the niobium were investigated to reveal the correlation of initial texture/microstructure and tensile properties. The crucial differences of microstructure and orientations after recrystallization would influence tensile properties of the niobium. The differences of tensile behaviors during tension testing correspond to the different microstructure and texture evolution in the niobium. The enhanced  〈110〉 // RD texture during the tensile deformation indicates that orientations of sub-structures are arranging along the tensile axis in the RCD-60 niobium. The RCD-84 and CD-84 niobium present the other phenomenon, that sub-structures near the fracture occur a significant rotation and the  〈110〉 // RD texture has been slightly changed after tensile failure. The recrystallized niobium fabricated by the RCD-84 obtains excellent tensile properties with ultimate tensile strength of 364 MPa and elongation of 55%. The strain hardening rate of the CD-84 niobium is the highest during the initial stage of tensile deformation, and becomes lower than that of the RCD-84 niobium after the 16% strain. Furthermore, the analysis of Taylor factors is applied to reveal the difference of hardening rates during tensile deformation due to different fabrication and recrystallization processes of the polycrystalline niobium.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 16 August 2021

    The Graphic Abstract has been included.

References

  1. G.S. Choi, J.W. Lim, N.R. Munirathnam, I.H. Kim, Met. Mater. Int. 15(3), 385–390 (2009)

    Article  CAS  Google Scholar 

  2. L. Chen, W.P. Xie, M.Y. Li, J.L. He, H.R. Fan, B.C. Zhang, F.S. He, K. Zhao, J.E. Chen, K.X. Liu, Chin. Phys. C 32, 1003–1006 (2008)

    Article  CAS  Google Scholar 

  3. G. Ciovati, P. Dhakal, J. Matalevich, G. Myneni, A. Schmidt, J. Iversen, A. Matheisen, W. Singer, Mater. Sci. Eng. A 642, 117–127 (2015)

    Article  CAS  Google Scholar 

  4. A. Zamiri, F. Pourboghrat, Int. J. Solids Struct. 44, 8627–8647 (2007)

    Article  Google Scholar 

  5. B.L. Boyce, B.G. Clark, P. Lu, J.D. Carroll, C.R. Weinberger, Metall. Mater. Trans. A 44, 4567–4580 (2013)

    Article  CAS  Google Scholar 

  6. E. Shafiei, K. Dehghani, F. Ostovan, M. Toozandehjani, Met. Mater. Int. 25(5), 1378–1387 (2019)

    Article  CAS  Google Scholar 

  7. C. Deng, S.F. Liu, J.L. Ji, X.B. Hao, Z.Q. Zhang, Q. Liu, J. Mater. Process. Tech. 214, 462–469 (2014)

    Article  Google Scholar 

  8. Y. Liu,; S. Liu, J. Zhu, H. Fan, C. Deng, L. Cao, X. Wu, Q. Liu, J. Mater. Sci. 53, 12543–12552 (2018)

    Article  CAS  Google Scholar 

  9. T.W. Xu, S.S. Zhang, N. Cui, L. Cao, Metall. Mater. Trans. A 50, 5297–5313 (2019)

    Article  CAS  Google Scholar 

  10. H. Jiang, T.R. Bieler, C. Compton, T.L. Grimm, Physica C 441, 118–121 (2006)

    Article  CAS  Google Scholar 

  11. R. Srinivasan, G.B. Viswanathan, V.I. Levit, H.L. Fraser, Mater. Sci. Eng. A 507, 179–189 (2009)

    Article  Google Scholar 

  12. C. Deng, S.F. Liu, H.Y. Fan, X.B. Hao, J.L. Ji, Z.Q. Zhang, Metall. Mater. Trans. A 46, 5477–5481 (2015)

    Article  CAS  Google Scholar 

  13. W. Mao, Mater. Sci. Eng. A 672, 129–134 (2016)

    Article  CAS  Google Scholar 

  14. S.F. Liu, Y.H. Liu, L.J. Li, C. Deng, H.Y. Fan, Y. Guo, L.F. Cao, Q. Liu, J. Mater. Sci. 53, 2985–2994 (2018)

    Article  CAS  Google Scholar 

  15. C.A. Michaluk, J. Electron. Mater. 31, 2–9 (2002)

    Article  CAS  Google Scholar 

  16. R.K. Ray, J.J. Jonas, R.E. Hook, Int. Mater. Rev. 39, 129–172 (1993)

    Article  Google Scholar 

  17. K.K. Saxena, V. Pancholi, Zr–Nb Alloys and Its Hot Deformation Analysis Approaches, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00812-8

  18. D. Kaufmann, R. Monig, C.A. Volkert, O. Kraft, Int. J. Plasticity 27, 470–478 (2011)

    Article  CAS  Google Scholar 

  19. J.Y. Kim, D.C. Jang, J.R. Greer, Scripta Mater. 61, 300–303 (2009)

    Article  CAS  Google Scholar 

  20. S.W. Lee, Y.T. Cheng, I. Ryu, J.R. Greer, Sci. China Technol. Sci. 57, 652–662 (2014)

    Article  CAS  Google Scholar 

  21. H.R.Z. Sandim, J.F.C. Lins, A.L. Pinto, A.F. Padilha, Mater. Sci. Eng. A 354, 217–228 (2003)

    Article  Google Scholar 

  22. J.D. Carroll, B.G. Clark, T.E. Buchheit, B.L. Boyce, C.R. Weinberger, Mater. Sci. Eng. A 581, 108–118 (2013)

    Article  CAS  Google Scholar 

  23. K. Lembit, K. Eduard, S. Mart, V. Mart, J. Mater. Sci. 48, 4723–4729 (2013)

    Article  Google Scholar 

  24. M.F. Hupalo, H.R.Z. Sandim, Mater. Sci. Eng. A 318, 216–223 (2001)

    Article  Google Scholar 

  25. T. Xu, S. Zhang, S. Liang, N. Cui, L. Cao, Y. Wan, Sci. Rep. 9, 17628 (2019)

    Article  Google Scholar 

  26. T.W. Xu, S.S. Zhang, N. Cui, L. Cao, Y. Wan, J. Mater. Eng. Perform. 28(12), 7188–7197 (2019)

    Article  CAS  Google Scholar 

  27. T.W. Xu, S.S. Zhang, N. Cui, L. Cao, Y. Wan, J. Mater. Eng. Perform. 28(11), 6969–6979 (2019)

    Article  CAS  Google Scholar 

  28. F. Rubitschek, T. Niendorf, I. Karaman, H.J. Maier, J. Mech. Behav. Biomed. 5, 181–192 (2012)

    Article  CAS  Google Scholar 

  29. H.R.Z. Sandim, D. Raabe, Scripta Mater. 53, 207–212 (2005)

    Article  CAS  Google Scholar 

  30. B.L. Boyce, B.G. Clark, P. Lu, J.D. Carroll, C.R. Weinberger, Metall. Mater. Trans. A 44, 4567–4580 (2013)

    Article  CAS  Google Scholar 

  31. A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, S. Ma, Mater. Sci. Eng. A 767, 138402 (2019)

    Article  CAS  Google Scholar 

  32. S. Zhang, W. Liu, J. Wan, R.D.K. Misra, Q. Wang, C. Wang, Mater. Sci. Eng. A 775, 138939 (2020)

    Article  CAS  Google Scholar 

  33. T. Guo, Q. Li, C. Wang, F. Zhang, Z. Jia, Acta Metall. Sini. 53, 992–999 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Program of Shandong Province of China (No. 2018GGX102027). The authors of S.S. ZHANG and T.W. XU sincerely acknowledge the technical support of the Western superconducting technology co., LTD (WST).

Author information

Authors and Affiliations

Authors

Contributions

Shanshan Zhang performed the data analyses and wrote the manuscript; Yuancai Liu contributed significantly to the analysis; Tiewei Xu contributed to the conception of the study; Mingxue Sun performed the analysis with constructive discussions; Qi Zhang and Yong Wan helped revise the manuscript.

Corresponding author

Correspondence to Tiewei Xu.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, Y., Xu, T. et al. Effect of Texture and Microstructure on Tensile Behaviors in the Polycrystalline Pure Niobium. Met. Mater. Int. 27, 4023–4034 (2021). https://doi.org/10.1007/s12540-020-00925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00925-0

Keywords

Navigation