Skip to main content

Advertisement

Log in

Severe Plastic Deformation of Al–Mg–Si Alloys Processed Through Rolling Techniques: A Review

  • Review
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In the present work, different combinations of rolling used by the researchers as a novel severe plastic deformation technique for the deformation of Al–Mg–Si alloys have been investigated. Reported research work is used for explaining the microstructures obtained after the processing with the help of Electron Back-Scattered Diffraction (EBSD), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetery (DSC). Based on the literatures investigated, it was found that cryorolling (CR) followed by warm rolling (WR) of Al–Mg–Si alloy provided the highest specific strength compared to all the investigated different combinations of rolling techniques available in the open literatures. The CR (70%) followed by WR (20%) at 145 °C followed by ageing at 125 °C for 60 h provided the highest hardness (130 HV) and ultimate tensile strength (400 MPa) in Al–Mg–Si alloy having a chemical composition of (Si:0.67 Fe:0.28 Cu:0.20 Mn:0.04 Mg:1.01 Cr:0.05 Zn:0.06 Ti:0.01 Al: balance). The CR followed by warm rolling helped in retaining the higher strength as well as higher ductility. It is because of dynamic recovery and precipitation evolution was dominated during the processing. The dynamic recovery was promoted the higher ductility, and precipitation evolution helped in the improvement in the strength due to precipitation strengthening. The peak ageing of warm rolled sample further helped in improvement in the mechanical properties by evolution of β′′-precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig . 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, A. Yanagida, Severe plastic deformation (SPD) processes for metals. CIRP Ann.57(2), 716–735 (2008)

    Article  Google Scholar 

  2. M. Vaseghi, H.S. Kim, A combination of severe plastic deformation and ageing phenomena in Al–Mg–Si Alloys. Mater Des. 1980–2015(36), 735–740 (2012)

    Article  CAS  Google Scholar 

  3. S.K. Panigrahi, R. Jayaganthana, V. Pancholi, M. Gupta, A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy. Mater Chem Phys. 122, 188–193 (2010)

    Article  CAS  Google Scholar 

  4. A.S.M. Agena, A study of flow characteristics of nanostructured Al-6082 alloy produced by ECAP under upsetting test. J Mater Process Technol. 209(2), 856–863 (2009)

    Article  CAS  Google Scholar 

  5. S. Lokesh Vendra, S. Goel, R. Nikhil Kumar, Jayaganthan., A study on fracture toughness and strain rate sensitivity of severely deformed Al 6063 alloys processed by multiaxial forging and rolling at cryogenic temperature. Mater Sci Eng A. 686, 82–92 (2017)

    Article  CAS  Google Scholar 

  6. S.K. Panigrahi, R. Jayaganthan, A study on the mechanical properties of cryorolled Al–Mg–Si alloy. Mater Sci Eng A. 480, 299–305 (2008)

    Article  CAS  Google Scholar 

  7. N. Kumar, G.M. Owolabi, R. Jayaganthan, Al 6082 alloy strengthening through low strain multi-axial forging. Mater. Charact. 155, 109761 (2019)

    Article  CAS  Google Scholar 

  8. B. Mirzakhani, Y. Payandeh, Combination of sever plastic deformation and precipitation hardening processes affecting the mechanical properties in Al–Mg–Si alloy. Mater Des. 68, 127–133 (2015)

    Article  CAS  Google Scholar 

  9. A. Johannes, osterreicher., Combined cyclic deformation and artificial ageing of an Al–Mg–Si alloy. Mater Lett: X. 10, 100072 (2021)

    Google Scholar 

  10. M. Kolar, K.O. Pedersen, S. Gulbrandsen-Dahl, K. Marthinsen, Combined effect of deformation and artificial aging on mechanical properties of Al–Mg–Si Alloy. Trans Nonferrous Met Soc China. 22(8), 1824–1830 (2012)

    Article  CAS  Google Scholar 

  11. A.P. Murugesan, V. Rajinikanth, B. Mahato, M. Wegner, M. Witte, G. Wilde, S.G. Chowdhury, Concurrent precipitation and associated texture evolution in AA 6082 alloy during high pressure torsion (HPT) processing. Mater Sci Eng: A. 700, 487–494 (2017)

    Article  CAS  Google Scholar 

  12. X. Fan, Z. He, X. Knag, S. Yuan, Deformation and strengthening analysis of Al–Mg–Si alloy sheet during hot gas forming with synchronous die quenching. J Manuf Process. 57, 452–461 (2020)

    Article  Google Scholar 

  13. Y.N. Kwon, Y.S. Lee, J.H. Lee, Deformation behaviour of Al–Mg–Si alloy at the elevated temperature. J. Mater. Process. Technol. 187–188, 533–536 (2007)

    Article  CAS  Google Scholar 

  14. S.K. Panigrahi, R. Jayaganthan, Development of ultrafine grained Al–Mg–Si alloy with enhanced strength and ductility. J Alloys Compd. 470, 285–288 (2009)

    Article  CAS  Google Scholar 

  15. S.K. Panigrahi, R. Jayaganthan, Development of ultrafine-grained Al 6063 alloy by cryorolling with the optimized initial heat treatment conditions. Mater Des. 32, 2172–2180 (2011)

    Article  CAS  Google Scholar 

  16. M. Liu, H.J. Roven, Yu. Yingda, J.C. Werenskiold, Deformation structures in 6082 aluminium alloy after severe plastic deformation by equal-channel angular pressing. Mater. Sci. Eng., A. 483–484, 59–63 (2008)

    Article  CAS  Google Scholar 

  17. H.J. Roven, M. Liu, J.C. Werenskiold, Dynamic precipitation during severe plastic deformation of an Al–Mg–Si Al alloy. Mater. Sci. Eng., A. 483–484, 54–58 (2008)

    Article  CAS  Google Scholar 

  18. Y. Weng, Z. Jia, L. Ding, Y. Pan, Y. Liu, Q. Liu, Effect of Ag and Cu additions on natural aging and precipitation hardening behavior in Al–Mg–Si alloys. J Alloys Compd. 695, 2444–2452 (2017)

    Article  CAS  Google Scholar 

  19. G. Das, M. Das, S. Ghosh, A.K. Paritosh Dubey, Ray., Effect of aging on mechanical properties of 6063 Al-alloy using instrumented ball indentation technique. Mater Sci Eng A. 527, 1590–1594 (2010)

    Article  CAS  Google Scholar 

  20. T. Ye, L. Li, P. Guo, G. Xiao, Z. Chen, Effect of aging treatment on the microstructure and flow behavior of 6063 aluminum alloy compressed over a wide range of strain rate. Int. J. Impact Eng. 90, 72–80 (2016)

    Article  Google Scholar 

  21. D. Odoh, Y. Mahmoodkhani, M. Wells, Effect of alloy composition on hot deformation behavior of some Al–Mg–Si alloys. Vacuum. 149, 248–255 (2018)

    Article  CAS  Google Scholar 

  22. N. Kumar, P.N. Rao, R. Jayaganthan, H.G. Brokmeier, Effect of cryorolling and annealing on recovery, recrystallisation, grain growth and their influence on mechanical and corrosion behaviour of 6082 Al alloy. Mater chem phys. 165, 177–187 (2015)

    Article  CAS  Google Scholar 

  23. P. Nageswera Rao, B. Viswanadh, R. Jayaganthan, Effect of cryorolling and warm rolling on precipitation evolution in Al 6061 alloy. Mater Sci Eng A. 606, 1–10 (2014)

    Article  CAS  Google Scholar 

  24. S.K. Panigrahi, R. Jayaganthan, V. Chawla, Effect of cryorolling on microstructure of Al–Mg–Si alloy. Mater Lett. 62, 2626–2629 (2008)

    Article  CAS  Google Scholar 

  25. H.W. Yang, I.P. Widiantara, Y.G. Ko, Effect of deformation path on texture and tension properties of submicrocrystalline Al–Mg–Si alloy fabricated by differential speed rolling. Materials Letter. 213, 54–57 (2018)

    Article  CAS  Google Scholar 

  26. R. Nikhil Kumar, H.-G. Jayaganthan, Effect of deformation temperature on precipitation, microstructural evolution, mechanical and corrosion behavior of 6082 Al alloy. Trans. Nonferrous Met. Soc. China. 27, 475–492 (2017)

    Article  Google Scholar 

  27. N. Kumar, R. Sunkulp Goel, H.B. Jayaganthan, Effect of grain boundary misorientaton, deformation temperature and AlFeMnSi-phase on fatigue life of 6082 Al alloy. Mater Charact. 124, 229–240 (2017)

    Article  CAS  Google Scholar 

  28. O. Engler, C.D. Marioara, Y. Aruga, M. Kozuka, O.R. Myhr, Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of Al–Mg–Si alloy AA 6016. Mater. Sci. Eng., A. 759, 520–529 (2019)

    Article  CAS  Google Scholar 

  29. S.K. Panigrahi, R. Jayaganthan, V. Pancholi, Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy. Mater Des. 30, 1894–1901 (2009)

    Article  CAS  Google Scholar 

  30. D. Singh, R. Jayaganthan, Effect of post cryorolling treatments on microstructural and mechanical behaviour of ultrafine grained Al–Mg–Si alloy. J Mater Sci Technol. 30(10), 998–1005 (2014)

    Article  CAS  Google Scholar 

  31. Y. Zi, L. Zeqin, D. Leyvraz, J. Banhart, Effect of pre-ageing on natural secondary ageing and paint bake hardening in Al–Mg–Si alloys. Materialia. 7, 100413 (2019)

    Article  CAS  Google Scholar 

  32. S.K. Panigrahi, R. Jayaganthan, Effect of rolling temperature on microstructure and mechanical properties of 6063 Al alloy. Mater. Sci. Eng., A. 492, 300–305 (2008)

    Article  CAS  Google Scholar 

  33. Lu et al., Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy-phase particle evolution in a twin-roll-casted Al-Mg-Si alloy on recrystallization texture and mechanical anisotropy. Mater. Charact. 176, 111038 (2021)

    CAS  Google Scholar 

  34. H. Zhao, Q. Pan, Q. Qin, Wu. Yujiao, Su. Xiangdong, Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy. Mater. Sci. Eng., A. 751, 70–79 (2019)

    Article  CAS  Google Scholar 

  35. Yu. Wang, Y. Deng, J. Chen, Q. Dai, X. Guo, Effects of grain structure related precipitation on corrosion behavior and corrosion fatigue property of Al–Mg–Si alloy. J. mater. Res. technol. 9(3), 5391–5540 (2020)

    Article  CAS  Google Scholar 

  36. X. Qian, N. Parson, X. Grant Chen, Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing. J Mater Sci Technol. 52, 189–197 (2020)

    Article  Google Scholar 

  37. P.R. Nageswara raoJayaganthan, Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy. Mater Des. 39, 226–233 (2012)

    Article  CAS  Google Scholar 

  38. M.J. Kim, M.G. Lee, K. Hariharan, S.T. Hong, I.S. Choi, D. Kim, H.N. Han, Electric current–assisted deformation behavior of Al–Mg–Si alloy under uniaxial tension. Int J Plast. 94, 148–170 (2017)

    Article  CAS  Google Scholar 

  39. W.J. Kim, S.J. Yoo, Enhanced ductility and deformation mechanisms of ultrafine-grained Al–Mg–Si alloy in sheet form at warm temperatures. Scripta Mater. 61, 125–128 (2009)

    Article  CAS  Google Scholar 

  40. K. Majchrowicz, Z. Pakiela, W. Chrominski, M. Kulczyk, Enhanced strength and electrical conductivity of ultrafine-grained Al–Mg–Si alloy processed by hydrostatic extrusion. Mater. Charact. 135, 104–114 (2018)

    Article  CAS  Google Scholar 

  41. L. Winter, K. Hockauf, S. Winter, T. Lampke, Equal-channel angular pressing influencing the mean stress sensitivity in the high cycle fatigue regime of the 6082 aluminum alloy. Mater. Sci. Eng., A. 795, 140014 (2020)

    Article  CAS  Google Scholar 

  42. E. Ortiz-cuellar, M.A.L. Hernandez-Rodriguez, E. Garcia-Sanchez, Evaluation of the tribological properties of an Al–Mg–Si alloy processed by severe plastic deformation. Wear. 271, 1828–1832 (2011)

    Article  CAS  Google Scholar 

  43. O.P. Gbenebor, O.S.I. Fayomi, A.P.I. Popoola, A.O. Inegbenebor, F. Oyawale, Extrusion die geometry effects on the energy absorbing properties and deformation response of 6063-type Al–Mg–Si aluminum alloy. Results in Physics. 3, 1–6 (2013)

    Article  Google Scholar 

  44. D.C.C. Magalhaes, A.M. Kliauga, V.L. Sordi, Flow behavior and fracture of Al–Mg–Si alloy at cryogenic temperatures. Trans. Nonferrous Met. Soc. China. 31, 595–608 (2021)

    Article  CAS  Google Scholar 

  45. Q.Y. Yang, Y.A.N.G. Dong, Z.Q. Zhang, L.F. Cao, X.D. Wu, G.J. Huang, L.I.U. Qing, Flow behavior and microstructure evolution of 6A82 aluminium alloy with high copper content during hot compression deformation at elevated temperatures. Transact Nonferrous Met Soc China. 26(3), 649–657 (2016)

    Article  CAS  Google Scholar 

  46. Y. Aruga, M. Kozuka, T. Sato, Formulation of initial artificial age-hardening response in an Al–Mg–Si alloy based on the cluster classification using a high-detection-efficiency atom probe. J. Alloy. Compd. 739, 1115–1123 (2018)

    Article  CAS  Google Scholar 

  47. D. Pan, Y. Wang, Q. Guo, D. Zhang, X. Xu, Y. Zhao, Grain refinement of Al–Mg–Si alloy without any mechanical deformation and matrix phase transformation via cyclic electro-pulsing treatment. Mater Sci Eng: A. 807, 140916 (2021)

    Article  CAS  Google Scholar 

  48. S.H. Wang, C.H. Liu, J.H. Chen, X.L. Li, D.H. Zhu, G.H. Tao, Hierarchical nanostructures strengthen Al–Mg–Si alloys processed by deformation and aging. Mater Sci Eng: A. 585, 233–242 (2013)

    Article  CAS  Google Scholar 

  49. L. Winter, K. Hockau, T. Lampke, High cycle fatigue behavior of the severely plastically deformed 6082 aluminum alloy with an anodic and plasma electrolytic oxide coating. Surf. Coat. Technol. 349, 576–658 (2018)

    Article  CAS  Google Scholar 

  50. J. Li, X. Wu, L. Cao, B. Liao, Y. Wang, Q. Liu, Hot deformation and dynamic recrystallization in Al–Mg–Si alloy. Mater Charact. 173, 110976 (2021)

    Article  CAS  Google Scholar 

  51. H. Liao, Wu. Yuna, K. Zhou, J. Yang, Hot deformation behavior and processing map of Al-Si-Mg alloys containing different amount of silicon based on Gleebe-3500 hot compression simulation. Mater. Des. 65, 1091–1099 (2015)

    Article  CAS  Google Scholar 

  52. Hu. Jiamin, W. Zhang, Fu. Dingfa, J. Teng, H. Zhang, Improvement of the mechanical properties of Al–Mg–Si alloys with nano-scale precipitates after repetitive continuous extrusion forming and T8 tempering. J Mater Res Technol. 8(6), 5950–5960 (2019)

    Article  CAS  Google Scholar 

  53. J. Zhang, M. Ma, F. Shen, D. Yi, B. Wang, Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al–Mg–Si alloy cables. Mater Sci Eng: A. 710, 27–37 (2018)

    Article  CAS  Google Scholar 

  54. J. González, S. Bagherifard, M. Guagliano, I.F. Pariente, Influence of different shot peening treatments on surface state and fatigue behaviour of Al 6063 alloy. Eng Fract Mech. 185, 72–81 (2017)

    Article  Google Scholar 

  55. G.J. Gao, H.E. Chen, L.I. Yong, J.D. Li, Z.D. Wang, R.D.K. Misra, Influence of different solution methods on microstructure, precipitation behavior and mechanical properties of Al–Mg–Si alloy. Trans Nonferrous Met Soci China. 28(5), 839–847 (2018)

    Article  CAS  Google Scholar 

  56. D. Jiang, C. Wang, Influence of microstructure on deformation behaviour and fracture mode of Al–Mg–Si alloy. Mater. Sci. Eng., A. 352, 29–33 (2003)

    Article  CAS  Google Scholar 

  57. E. Cerri, P. Leo, Influence of severe plastic deformation on aging of Al–Mg–Si alloys. Mater. Sci. Eng., A. 410–411, 226–229 (2005)

    Article  CAS  Google Scholar 

  58. M. Hussain, P.N. Rao, D. Singh, R. Jayaganthan, S. Goel, K.K. Saxena, Insight to the evolution of nano precipitates by cryo rolling plus warm rolling and their effect on mechanical properties in Al 6061 alloy. Mater Sci Eng: A. 811, 141072 (2021)

    Article  CAS  Google Scholar 

  59. V. Kumar, D. Kumar, Investigation of tensile behaviour of cryorolled and room temperature rolled 6082 Al alloy. Mater. Sci. Eng., A. 691, 211–217 (2017)

    Article  CAS  Google Scholar 

  60. J. Bouquerel, B. Diawara, A. Dubois, M. Dubar, J.-B. Vogt, D. Najjar, Investigations of the microstructural response to a cold forging process of the 6082–T6 alloy. Mater. Des. 68, 245–258 (2015)

    Article  CAS  Google Scholar 

  61. N.R. Bochvar, O.V. Rybalchenko, N.Y. Tabachkova, G.V. Rybalchenko, N.P. Leonova, L.L. Rokhlin, Kinetics of phase precipitation in Al–Mg–Si alloys subjected to equal-channel angular pressing during subsequent heating. J Alloys Compd. 881, 160583 (2021)

    Article  CAS  Google Scholar 

  62. P.N. Rao, D. Singh, R. Jayaganthan, Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature. Mater Des. 56, 97–104 (2014)

    Article  CAS  Google Scholar 

  63. L. Wan, Y. Huang, W. Guo, S. Lv, J. Feng, Mechanical Properties and Microstructure of 6082–T6 Aluminum Alloy Joints by Self-support Friction Stir Welding. J. Mater. Sci. Technol. 30(12), 1243–1250 (2014)

    Article  CAS  Google Scholar 

  64. X. Zhang, L.K. Huang, B. Zhang, Y.Z. Chen, F. Liu, Microstructural evolution and strengthening mechanism of an Al–Si–Mg alloy processed by high-pressure torsion with different heat treatments. Mater Sci Eng: A. 794, 139932 (2020)

    Article  CAS  Google Scholar 

  65. M. Song, J. Kim, Microstructural evolution at the initial stage of two-step aging in an Al–Mg–Si alloy characterized by a three dimensional atom probe. Mater Sci Eng: A. 815, 141301 (2021)

    Article  CAS  Google Scholar 

  66. X.D. Wang, L.I.U. Xiong, D.I.N.G. Hao, S.R. Yan, Z.H. Xie, B.Q. Pan, W.Y. Wang, Microstructure and mechanical properties of Al− Mg− Si alloy U-shaped profile. Trans Nonferrous Met Soc China. 30(11), 2915–2926 (2020)

    Article  CAS  Google Scholar 

  67. Liu et al., Microstructure and mechanical properties of Al–Mg–Si alloy fabricated by a short process based on sub-rapid solidification. J Mater Sci Technol. 41, 178–186 (2020)

    Article  Google Scholar 

  68. K.J. Al-Fadhalah, A.I. Almazrouee, A.S. Aloraier, Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063. Mater. Des. 53, 550–560 (2014)

    Article  CAS  Google Scholar 

  69. X. Meng, S. Yang, Yu. Yubao Huang, J.G. Fang, Qi. Xiong, C. Duan, Microstructure characterization and mechanism of fatigue crack propagation of 6082 aluminum alloy joints. Mater. Chem. Phys. 257, 123734 (2021)

    Article  CAS  Google Scholar 

  70. S. Liu, Q. Pan, M. Li, X. Wang, X. He, X. Li, J. Lai, Microstructure evolution and physical-based diffusion constitutive analysis of Al–Mg–Si alloy during hot deformation. Mater Des. 184, 108181 (2019)

    Article  CAS  Google Scholar 

  71. R. Lu, S. Zheng, J. Teng, J. Hu, D. Fu, J. Chen, H. Zhang, Microstructure, mechanical properties and deformation characteristics of Al–Mg–Si alloys processed by a continuous expansion extrusion approach. J Mater Sci Technol. 80, 150–162 (2021)

    Article  CAS  Google Scholar 

  72. M. Liu, J. Chen, Y. Lin, Z. Xue, H.J. Roven, P.C. Skaret, Microstructure, mechanical properties and wear resistance of an Al–Mg–Si alloy produced by equal channel angular pressing. Prog Nat Sci: Mater Int. 30(4), 485–493 (2020)

    Article  CAS  Google Scholar 

  73. M. Shakoori Oskooie, H. Asgharzadeh, H.S. Kim, Microstructure, plastic deformation and strengthening mechanisms of an Al–Mg–Si alloy with a bimodal grain structure. J alloys an compound. 632, 540–5548 (2015)

    Article  CAS  Google Scholar 

  74. S. Lin, Y.L. Deng, J.G. Tang, S.H. Deng, H.Q. Lin, L.Y. Ye, X.M. Zhang, Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al–Mg–Si alloy. Mater Sci Eng: A. 745, 63–73 (2019)

    Article  CAS  Google Scholar 

  75. M. Das, G. Das, M. Ghosh, V. Matthias Wegner, S.G. Rajnikant, T.K.P. Chowdhury, Microstructures and mechanical properties of HPT processed 6063 Al alloy. Mater Sci Eng A. 558, 525–532 (2012)

    Article  CAS  Google Scholar 

  76. S.B. Puplampu, A. Siriruk, A. Sharma, D. Penumadu, Multiaxial deformation behavior of aluminum alloy 6061 subjected to fire damage. Mech. Mater. 159, 103885 (2021)

    Article  Google Scholar 

  77. J.K. Sunde, C.D. Marioara, S. Wenner, R. Holmestad, On the microstructural origins of improvements in conductivity by heavy deformation and ageing of Al–Mg–Si alloy 6101. Mater Charact. 176, 111073 (2021)

    Article  CAS  Google Scholar 

  78. N. Kumar, G.M. Owolabi, R. Jayaganthan, O.O. Ajide, Plane stress fracture toughness of cryorolled 6082 Al alloy. Theoret. Appl. Fract. Mech. 95, 28–41 (2018)

    Article  CAS  Google Scholar 

  79. M. Yang, H. Chen, A. Orekhov, Q. Lu, X. Lan, K. Li, Y. Du, Quantified contribution of β ″and β′ precipitates to the strengthening of an aged Al–Mg–Si alloy. Mater Sci Eng: A. 774, 138776 (2020)

    Article  CAS  Google Scholar 

  80. J.-H. Zheng, C. Pruncu, K. Zhang, K. Zheng, J. Jiang, Quantifying geometrically necessary dislocation density during hot deformation in AA6082 Al alloy. Mater. Sci. Eng., A. 814, 141158 (2021)

    Article  CAS  Google Scholar 

  81. H. Ma, Q. Hou, Yu. Zhiwei, P. Ni, Stability of 6082–T6 aluminum alloy columns under axial forces at high temperatures. Thin-Walled Struct. 157, 107083 (2020)

    Article  Google Scholar 

  82. S. Dadbakhsh, A. Karimi Taheri, C.W. Smith, Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process. Mater Sci Eng A. 527, 4758–4766 (2010)

    Article  CAS  Google Scholar 

  83. Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chena, Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al–Mg–Si alloys. J. Mater. Sci. Technol. 41, 127–138 (2020)

    Article  Google Scholar 

  84. Wang et al., Superior mechanical properties induced by the interaction between dislocations and precipitates in the electro-pulsing treated Al–Mg–Si alloys. Mater. Sci. Eng., A. 735, 154–161 (2018)

    Article  CAS  Google Scholar 

  85. L. Shi, K. Baker, R. Young, J. Kang, J. Liang, B. Shalchi-Amirkhiz, H. Zurob, The effect of chemical patterning induced by cyclic plasticity on the formation of precipitates during aging of an Al–Mg–Si alloy. Mater Sci Eng: A. 815, 141265 (2021)

    Article  CAS  Google Scholar 

  86. Teichmann et. al., The effect of simultaneous deformation and annealing on the precipitation behaviour and mechanical properties of an Al–Mg–Si alloy Mater. Sci. Eng., A 565, 228–235 (2013)

    Article  CAS  Google Scholar 

  87. T. Saito, C.D. Marioara, J. Røyset, K. Marthinsen, R. Holmestad, The effects of quench rate and pre-deformation on precipitation hardening in Al–Mg–Si alloys with different Cu amounts. Mater Sci Eng: A. 609, 72–79 (2014)

    Article  CAS  Google Scholar 

  88. N. Kumar, S. Goel, R. Jayaganthan, G.M. Owolabi, The influence of metallurgical factors on low cycle fatigue behavior of ultra-fine grained 6082 Al alloy. Int. J. Fatigue. 110, 130–143 (2018)

    Article  CAS  Google Scholar 

  89. M.M. El-Rayes, E.A. El-Danaf, The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. J Mater Process Technol. 212(5), 1157–1168 (2012)

    Article  CAS  Google Scholar 

  90. Kim et al., The nanocluster formation and vacancy behavior of step-quenched Al–Mg–Si alloy and its effect on transition to β′′-phase via advanced methods. Mater. Sci. Eng., A. 811, 141032 (2021)

    Article  CAS  Google Scholar 

  91. A. Biradar, R. Rasiwasia, J. Soni, M. Orłowska, M. Rijesh, Thermomechanical roll bonding of Al-6063 strips. J Alloys Compd. 855, 157401 (2021)

    Article  CAS  Google Scholar 

  92. Y. Birol, Thixoforging experiments with 6082 extrusion feedstock. J alloy Compd. 455, 178–185 (2008)

    Article  CAS  Google Scholar 

  93. H. Mao, Y. Kong, D. Cai, M. Yang, Y. Peng, Y. Zeng, Y. Du, β’’needle-shape precipitate formation in Al–Mg–Si alloy: Phase field simulation and experimental verification. Comput Mater Sci. 184, 109878 (2020)

    Article  CAS  Google Scholar 

  94. N. Kumar, An exploration of microstructural in-homogeneity in the 6082 Al alloy processed through room temperature multi-axial forging. Mater. Charact. 176, 111134 (2021)

    Article  CAS  Google Scholar 

  95. N. Kumar, G.M. Owolabi, R. Jayaganthan, S. Goel, Correlation of fracture toughness with microstructural features for ultrafine-grained 6082 Al alloy. Fatigue Fract Eng Mater Struct. 41(9), 1884–1899 (2018)

    Article  CAS  Google Scholar 

  96. N. Kumar, G.M. Owolabi, R. Jayaganthan, G. Warner, Effect of Annealing on Mechanical Properties and Metallurgical Factors of Ultrafine-Grained 6082 Al Alloy. Trans Indian Inst Met. 72(9), 2523–2531 (2019)

    Article  CAS  Google Scholar 

  97. N. Kumar, G.M. Owolabi, R. Jayaganthan, O.O. Ajide, S. Sonker, G. Warner, Hot-Compression Response of Solution-Treated Al–Mg–Si Alloy. J. of Materi Eng and Perform. 28, 7602–7615 (2019)

    Article  CAS  Google Scholar 

  98. S.P. Yuan, G. Liu, R.H. Wang, G.-J. Zhang, X. Pu, J. Sun, K.-H. Chen, Effect of precipitate morphology evolution on the strength–toughness relationship in Al–Mg–Si alloys. Scripta Mater. 60, 1109–1112 (2009)

    Article  CAS  Google Scholar 

  99. R.S. Yassar, D.P. Field, H. Weiland, The effect of pre-deformation on the β’’ and β’ precipitates and the role of Q’ phase in an Al–Mg–Si alloy; AA6022. Scripta Mater. 53, 299–303 (2005)

    Article  CAS  Google Scholar 

  100. D.J. Lloyd, D. Steele, J.H. Huang, Plasticity associated with grain boundaries during the bending of an Al–Mg–Si-based alloy. Scripta Mater. 63, 426–429 (2010)

    Article  CAS  Google Scholar 

  101. Y. Birol, Pre-straining to improve the bake hardening response of a twin-roll cast Al–Mg–Si alloy. Scripta Mater. 52, 169–173 (2005)

    Article  CAS  Google Scholar 

  102. S. de La Chapelle, Cube recrystallization textures in a hot deformed Al–Mg–Si alloy. Scripta Mater. 45, 1387–1391 (2001)

    Article  Google Scholar 

  103. I. Sabirov, M.R. Barnett, Y. Estrin, P.D. Hodgson, The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy. Scripta Mater. 61, 181–184 (2009)

    Article  CAS  Google Scholar 

  104. M.A. van Huis, J.H. Chen, M.H.F. Sluiter, H.W. Zandbergen, Phase stability and structural features of matrix-embedded hardening precipitates in Al–Mg–Si alloys in the early stages of evolution. Acta Mater. 55, 2183–2199 (2007)

    Article  CAS  Google Scholar 

  105. S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Mechanisms controlling the artificial aging of Al–Mg–Si Alloys. Acta Mater. 59, 3352–3363 (2011)

    Article  CAS  Google Scholar 

  106. P.H. Ninive, A. Strandlie, S. Gulbrandsen-Dahl, W. Lefebvre, C.D. Marioara, S.J. Andersen, O.M. Løvvik, Detailed atomistic insight into the β ″phase in Al–Mg–Si alloys. Acta mater. 69, 126–134 (2014)

    Article  CAS  Google Scholar 

  107. M.J. Starink, L.F. Cao, P.A. Rometsch, A model for the thermodynamics of and strengthening due toco-clusters in Al–Mg–Si-based alloys. Acta Mater. 60, 4194–4207 (2012)

    Article  CAS  Google Scholar 

  108. Sha et al., Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion. Acta Mater. 63, 169–179 (2014)

    Article  CAS  Google Scholar 

  109. Q. Du, K. Tang, C.D. Marioara, S.J. Andersen, B. Holmedal, R. Holmestad, Modeling over-ageing in Al–Mg–Si alloys by a multi-phase CALPHAD-coupled Kampmann-Wagner Numerical model. Acta Mater. 122, 178–186 (2017)

    Article  CAS  Google Scholar 

  110. X. Sauvage, E.V. Bobruk, MYu. Murashkin, Y. Nasedkina, N.A. Enikeev, R.Z. Valiev, Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys. Acta Mater. 98, 355–366 (2015)

    Article  CAS  Google Scholar 

  111. W. Chrominski, M. Lewandowska, Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Mater. 103, 547–557 (2016)

    Article  CAS  Google Scholar 

  112. S. Zhu, H.-C. Shih, X. Cui, Yu. Chung-Yi, S.P. Ringer, Design of solute clustering during thermomechanical processing of AA6016 Al–Mg–Si alloy. Acta Mater. 203, 116455 (2021)

    Article  CAS  Google Scholar 

  113. P.W.J. Mckenzie, R. Lapovok, Y. Estrin, The influence of back pressure on ECAP processed AA 6016: Modeling and experiment. Acta Mater. 55, 2985–2993 (2007)

    Article  CAS  Google Scholar 

  114. S. Jana, R.S. Mishra, J.B. Baumann, G. Grant, Effect of friction stir processing on fatigue behavior of an investment cast Al–7Si–0.6 Mg alloy. Acta Mater. 58, 989–1003 (2010)

    Article  CAS  Google Scholar 

  115. S. Zhang, P.G. Mccormick, Y. Estrin, The morphology of portevin–le chatelier bands: finite element simulation for Al–Mg–Si. Acta mater. 49, 1087–1094 (2001)

    Article  CAS  Google Scholar 

  116. D. Giofre, W.A. Till Junge, M.C. Curtin, Ab initio modelling of the early stages of precipitation in Al-6000 alloys. Acta Mater. 140, 240–249 (2017)

    Article  CAS  Google Scholar 

  117. E. Mariani, E. Ghassemieh, Microstructure evolution of 6061 O Al alloy during ultrasonic consolidation: An insight from electron backscatter diffraction. Acta Mater. 58, 2492–2503 (2010)

    Article  CAS  Google Scholar 

  118. S. Shimizu, H.T. Fujii, Y.S. Sato, H. Kokawa, M.R. Sriraman, S.S. Babu, Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061. Acta Mater. 74, 234–243 (2014)

    Article  CAS  Google Scholar 

  119. P.W.J. Mckenzie, R. Lapovok, ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: Microstructure. Acta Mater. 58, 3198–3211 (2010)

    Article  CAS  Google Scholar 

  120. W. Woo, H. Choo, D.W. Brown, S.C. Vogel, P.K. Liaw, Z. Feng, Texture analysis of a friction stir processed 6061–T6 aluminum alloy using neutron diffraction. Acta Mater. 54, 3871–3882 (2006)

    Article  CAS  Google Scholar 

  121. F. Hannard, T. Pardoen, E. Maire, C. Le Bourlot, R. Mokso, A. Simar, Characterization and micromechanical modelling of microstructural heterogeneity effects on ductile fracture of 6xxx aluminium alloys. Acta Mater. 103, 558–572 (2016)

    Article  CAS  Google Scholar 

  122. P.W.J. Mckenzie, R. Lapovok, ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 2: Mechanical properties and texture. Acta Mater. 58, 3212–3222 (2010)

    Article  CAS  Google Scholar 

  123. A. Simar, Y.B.A.T. Bre´chetde MeesterDenquinPardoen, Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A–T6. Acta Mater. 55, 6133–6143 (2007)

    Article  CAS  Google Scholar 

  124. T. Sritharan, R.S. Chandel, Phenomena in interrupted tensile tests of heat-treated aluminium alloy 6061. Acta Mater. 45(8), 3155–3161 (1997)

    Article  CAS  Google Scholar 

  125. M. Ravi Shankar, S. Chandrasekar, A.H. King, W. Dale Compton, Microstructure and stability of nanocrystalline aluminum 6061 created by large strain machining. Acta Mater. 53, 4781–4793 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to acknowledge the financial support received under the scheme of seed grant provided to Dr. Nikhil Kumar by the IIT(BHU), Varanasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Kumar.

Ethics declarations

Conflict of Interest

I have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N. Severe Plastic Deformation of Al–Mg–Si Alloys Processed Through Rolling Techniques: A Review. Metallogr. Microstruct. Anal. 11, 353–404 (2022). https://doi.org/10.1007/s13632-022-00859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00859-6

Keywords

Navigation