Skip to main content
Log in

Strain Analysis of Multi-Phase Steel Using In-Situ EBSD Tensile Testing and Digital Image Correlation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An in-situ analysis of local strain accommodation on transformation induced plasticity (TRIP) aided multi-phase steel was performed with a correlative application of characterization techniques such as digital image correlation (DIC), electron backscatter diffraction (EBSD), and micro-mechanical testing. The local strain on the complex microstructure of the multi-phase steel was measured during a tensile test using an innovative DIC method (which does not employ artificial patterns), in conjunction with a scanning electron microscope. The constituent phases of the examined surface were identified by postprocessing implemented on the EBSD maps. This was further verified by nano-indentation, consequently enabling systematic and quantitative analyses of the strain partitioning between the phases. Soft acicular ferrite accommodated the largest strain with sites of intense strain localization around the hard, neighboring martensite. The retained austenite transformed gradually into martensite because of the applied strain and caused strain localization in the neighboring acicular ferrite. This verified that DIC method proposed in this study enables precise and effective data collection at the interfaces between different phases that could have certainly been blocked by the DIC patterns in the conventional method.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A cluster corresponded to a grain or a sub-granular area transformed from a parent austenite grain.

  2. The area is smaller than the average area of all BCC clusters.

  3. More than 60% of the boundary is shared with αm and γ.

  4. Figure 12b shows the data only for the phase boundaries by α1. This is only for better clarity of the figure, and the full set of data is consistent with Fig. 12a.

References

  1. A. Grajcar, R. Kuziak, W. Zalecki, Arch. Civ. Mech. Eng. 12, 334 (2012)

    Article  Google Scholar 

  2. C. Lesch, N. Kwiaton, F.B. Klose, Steel Res. Int. 88, 1700210 (2017)

  3. M. Kleiner, M. Geiger, A. Klaus, CIRP Ann. Manuf. Techn. 52, 521 (2003)

    Article  Google Scholar 

  4. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35, 2331 (2004)

    Article  CAS  Google Scholar 

  5. S. Toros, A. Polat, F. Ozturk, Mater. Design 41, 298 (2012)

    Article  CAS  Google Scholar 

  6. H. Khalatbari, A. Iqbal, X.F. Shi, L. Gao, G. Hussain, M. Hashemipour, Mater. Manuf. Process. 30, 1354 (2015)

    Article  CAS  Google Scholar 

  7. J.I. Yoon, J. Jung, H.H. Lee, J.Y. Kim, H.S. Kim, Met. Mater. Int. 25, 1161 (2019)

    Article  CAS  Google Scholar 

  8. H.L. Yi, L. Sun, X.C. Xiong, Mater. Sci. Technol. Lond. 34, 1112 (2018)

    Article  CAS  Google Scholar 

  9. J.P. Pedraza, R. Landa-Mejia, O. Garcia-Rincon, C.I. Garcia, Metals-Basel 9, 545 (2019)

  10. S. Kaar, D. Krizan, R. Schneider, C. Beal, C. Sommitsch, Metals-Basel 9, 1122 (2019)

  11. B.C. De Cooman, J.G. Speer, Steel Res. Int. 77, 634 (2006)

    Article  Google Scholar 

  12. N. Saeidi, M. Jafari, J.G. Kim, F. Ashrafizadeh, H.S. Kim, Met. Mater. Int. 26, 168 (2020)

    Article  CAS  Google Scholar 

  13. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59, 6059 (2011)

    Article  CAS  Google Scholar 

  14. F.G. Caballero, C. Garcia-Mateo, J. Chao, M.J. Santofimia, C. Capdevila, C.G. De Andres, ISIJ Int. 48, 1256 (2008)

    Article  CAS  Google Scholar 

  15. B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004)

    Article  CAS  Google Scholar 

  16. H. Ghadbeigi, C. Pinna, S. Celotto, J.R. Yates, Mater. Sci. Eng. A 527, 5026 (2010)

    Article  CAS  Google Scholar 

  17. S.O. Kruijver, L. Zhao, J. Sietsma, S.E. Offerman, N.H. Van Dijk, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, S. Van Der Zwaag, J. Phys. IV 104, 499 (2003)

    CAS  Google Scholar 

  18. W.S. Li, H.Y. Gao, H. Nakashima, S. Hata, W.H. Tian, Mater. Charact. 118, 431 (2016)

    Article  CAS  Google Scholar 

  19. C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, D. Raabe, Int. J. Plasticity 63, 198 (2014)

    Article  CAS  Google Scholar 

  20. M.A. Tschopp, B.B. Bartha, W.J. Porter, P.T. Murray, S.B. Fairchild, Metall. Mater. Trans. A 40, 2363 (2009)

    Article  CAS  Google Scholar 

  21. B. Wattrisse, A. Chrysochoos, J.M. Muracciole, M. Nemoz-Gaillard, Exp. Mech. 41, 29 (2001)

    Article  Google Scholar 

  22. Y.H. Wang, J.H. Jiang, C. Wanintrudal, C. Du, D. Zhou, L.M. Smith, L.X. Yang, Exp. Tech. 34, 54 (2010)

    Article  CAS  Google Scholar 

  23. F. Grytten, H. Daiyan, M. Polanco-Loria, S. Dumoulin, Polym. Test. 28, 653 (2009)

    Article  CAS  Google Scholar 

  24. S.H. Joo, J.K. Lee, J.M. Koo, S. Lee, D.W. Suh, H.S. Kim, Scripta Mater. 68, 245 (2013)

    Article  CAS  Google Scholar 

  25. Y. Balit, E. Charkaluk, A. Constantinescu, Addit. Manuf. 31, 100862 (2020)

  26. C. Rehrl, S. Kleber, T. Antretter, R. Pippan, Mater. Charact. 62, 793 (2011)

    Article  CAS  Google Scholar 

  27. S.Q. Zhang, A. Godfrey, C.L. Zhang, W. Liu, D.J. Jensen, Mater. Charact. 164, 2020332 (2020)

  28. S.I. Wright, S. Suzuki, M.M. Nowell, JOM 68, 2730 (2016)

    Article  Google Scholar 

  29. E. Soppa, P. Doumalin, P. Binkele, T. Wiesendanger, M. Bornert, S. Schmauder, Comp. Mater. Sci. 21, 261 (2001)

    Article  CAS  Google Scholar 

  30. H.X. Wang, H.M. Xie, Y.J. Li, J.G. Zhu, Meas. Sci. Technol. 23(3), 035402 (2012)

  31. Y.Z. Zhang, T.D. Topping, E.J. Lavernia, S.R. Nutt, Metall. Mater. Trans. A 45, 47 (2014)

    Article  CAS  Google Scholar 

  32. K.N. Jonnalagadda, I. Chasiotis, S. Yagnamurthy, J. Lambros, J. Pulskamp, R. Polcawich, M. Dubey, Exp. Mech. 50, 25 (2010)

    Article  CAS  Google Scholar 

  33. S. Nagarajan, M.K. Jain, D.S. Wilkinson, R.K. Mishra, Opt. Laser Eng. 102, 17 (2018)

    Article  Google Scholar 

  34. B. Ahn, H.I. Koo, N.I. Cho, Image registration algorithm based on regular sparse correspondences and SIFT, in Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Chiang Mai, 9-12 December 2014 (IEEE, Manhattan, 2014)

  35. D.G. Lowe, Object recognition from local scale-invariant features, in Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, 20-27 September 1999. vol. 2 (IEEE, Manhattan, 1999), p. 1150

  36. B. Pan, Opt. Laser Eng. 51, 1161 (2013)

    Article  Google Scholar 

  37. P. Lava, S. Cooreman, D. Debruyne, Opt. Laser Eng. 48, 457 (2010)

    Article  Google Scholar 

  38. P.D.C.A.R. Haynes, J. Mater. Sci. 31, 1843 (1996)

    Article  CAS  Google Scholar 

  39. B. Pan, K.M. Qian, H.M. Xie, A. Asundi, Meas. Sci. Technol. 20, 062001 (2009)

  40. X.C. Pan, J. Gao, S.Z. Tao, K. Liu, J. Bai, J.W. Luo, Ultrasonics 54, 990 (2014)

    Article  Google Scholar 

  41. H. Na, S. Nambu, M. Ojima, J. Inoue, T. Koseki, Scripta Mater. 69, 793 (2013)

    Article  CAS  Google Scholar 

  42. S.I. Wright, M.M. Nowell, Microsc. Microanal. 12, 72 (2006)

    Article  CAS  Google Scholar 

  43. T. Maitland, S. Sitzman, in Scanning Microscopy for Nanotechnology: Techniques and Applications, ed. by W. Zhou, Z.L. Wang (Springer, New York, 2007), p.41

  44. J.Y. Kang, D.H. Kim, S.I. Baik, T.H. Ahn, Y.W. Kim, H.N. Han, K.H. Oh, H.C. Lee, S.H. Han, ISIJ Int. 51, 130 (2011)

    Article  CAS  Google Scholar 

  45. S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17, 316 (2011)

    Article  CAS  Google Scholar 

  46. G. Miyamoto, A. Shibata, T. Maki, T. Furuhara, Acta Mater. 57, 1120 (2009)

    Article  CAS  Google Scholar 

  47. R. Balokhonov, V. Romanova, A. Panin, M. Kazachenok, S. Martynov, Phys. Mesomech. 21, 32 (2018)

    Article  Google Scholar 

  48. M. Mamivand, M.A. Zaeem, H.El Kadiri, Acta Mater. 87, 45 (2015)

    Article  CAS  Google Scholar 

  49. Q.H. Han, Y.L. Kang, P.D. Hodgson, N. Stanford, Scripta Mater. 69, 13 (2013)

    Article  CAS  Google Scholar 

  50. M.I. Latypov, S. Shin, B.C. De Cooman, H.S. Kim, Acta Mater. 108, 219 (2016)

    Article  CAS  Google Scholar 

  51. T.A. Berfield, J.K. Patel, R.G. Shimmin, P.V. Braun, J. Lambros, N.R. Sottos, Exp. Mech. 47, 51 (2007)

    Article  CAS  Google Scholar 

  52. H.N. Han, C.S. Oh, G. Kim, O. Kwon, Mater. Sci. Eng. A 499, 462 (2009)

    Article  CAS  Google Scholar 

  53. M. Soleimani, A. Kalhor, H. Mirzadeh, Mater. Sci. Eng. A Struct. 795 ,140023 (2020)

  54. H.N. Han, C.G. Lee, C.S. Oh, T.H. Lee, S.J. Kim, Acta Mater. 52, 5203 (2004)

    Article  CAS  Google Scholar 

  55. S.H. Lee, S.H. Lee, S.H. Kang, H.N. Han, K.H. Oh, H.C. Lee, ISIJ Int. 48, 1394 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.-H. Kang was supported by the National Research Foundation of Korea (NRF) (2021M3H4A6A01049712). K. H. Oh was supported by Korea Evaluation Institute of Industrial Technology (KEIT) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 1415168877). J.-Y. Kang acknowledges the financial support of the Fundamental R&D Program of the Korea Institute of Materials Science (PNK6920). H. N. Han and Y. Oh were supported by the National Research Foundation of Korea (NRF) Grant Funded by the Korean Government (MSIT) (Nos. 2019M3D1A1079215, 2020R1A5A6017701, and 2021R1A2C3005096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Yun Kang or Heung Nam Han.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.I., Oh, Y., Kim, D.U. et al. Strain Analysis of Multi-Phase Steel Using In-Situ EBSD Tensile Testing and Digital Image Correlation. Met. Mater. Int. 28, 1094–1104 (2022). https://doi.org/10.1007/s12540-021-01044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01044-0

Keywords

Navigation