Skip to main content
Log in

Purification of niobium by multiple electron beam melting for superconducting RF cavities

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, purification of commercial grade (∼99.9 %) niobium by multiple Electron Beam Melting (EBM) is reported. Impurity removal of carbon, oxygen, nitrogen, aluminum, iron, molybdenum, zirconium and tungsten in niobium matrix is presented as a part of the ingot melting stages. The minor material loss of niobium during melting is attributed to the amount of decarburization based on the ratio of initial and critical content of oxygen to carbon. The analysis of nearly 60 impurity elements in niobium was carried out by glow discharge mass spectrometry. In the end, the purity of niobium after multiple electron beam meltings was found to be 4N while the purity enhanced from 99.9 % (3N) to 99.993 % (4N3), including gaseous impurities, and 99.98 % (3N8) to 99.998 % (4N8) without gaseous impurities. The glow discharge mass spectrometry analytical results of purified niobium indicated that the material is suitable as input material for further processing of fabricated superconducting radio-frequency cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Padamsee, J. Less-Common Met. 139, 167 (1988).

    Article  CAS  Google Scholar 

  2. W. Singer, A. Brinkmann, D. Proch, and X. Singer, Physica C 386, 379 (2003).

    Article  ADS  CAS  Google Scholar 

  3. P. Kneisel, J. Less-Common Met. 139, 179 (1988).

    Article  CAS  Google Scholar 

  4. I.-H. Kim, J.-I. Lee, G.-S. Choi, and J.-S. Kim, Adv. Mater. Res. 26–28, 1059 (2007).

    Article  Google Scholar 

  5. K.-H. Heo, N. R. Munirathnam, J.-W. Lim, M.-T. Le, G.-S. Choi, Mater. Chem. Phys. 112, 923 (2008).

    Article  CAS  Google Scholar 

  6. M. Hormann, J. Less-Common Met. 139, 1 (1988).

    Article  CAS  Google Scholar 

  7. B. M. Shipilevsky and V. G. Glebovsky, Phys. Chem. Mech. Surf. 1, 1940 (1982).

    Google Scholar 

  8. C. K. Gupta, D. K. Bose, and N. Kishnamurthy, J. Less-Common Met. 139, 189 (1988).

    Article  CAS  Google Scholar 

  9. K. K. Shulze, J. Met. 33, 33 (1981).

    Google Scholar 

  10. E. V. Malang, C. S. Oglesby, T. Siegrist, and E. Bucher, Physica B 204, 363 (1995).

    Article  ADS  CAS  Google Scholar 

  11. J. C. S Pires, J. Otubo, A. F. B. Braga, and P. R. Mei, J. Mater. Process. Technol. 169, 16 (2005).

    Article  CAS  Google Scholar 

  12. O. Knache, O. Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, p. 2370, Springer-Verlag, New York (1991).

    Google Scholar 

  13. P. Jung and K. Trenzinger, Acta metall. 22, 123 (1974).

    Article  CAS  Google Scholar 

  14. E. Votava J. less-Common Met. 9, 409 (1965).

    Article  CAS  Google Scholar 

  15. T. K. Roy, A. Awasthi, and N. Krishnamurthy Int. J. Refract. Met. Hard. Mater 22, 251 (2004).

    Article  CAS  Google Scholar 

  16. R. Grill and A. Gnadenberger, Int. J. Refract. Met. Hard Mater. 24, 275 (2006).

    Article  CAS  Google Scholar 

  17. ASTM B394-78 Niobium and niobium base alloys.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Good-Sun Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, GS., Lim, JW., Munirathnam, N.R. et al. Purification of niobium by multiple electron beam melting for superconducting RF cavities. Met. Mater. Int. 15, 385–390 (2009). https://doi.org/10.1007/s12540-009-0385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-0385-0

Keywords

Navigation