Skip to main content
Log in

Comparative Assessment on the Hot Deformation Behaviour of 9Cr–1Mo Steel with 1Cr–1Mo Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Hot forged 1Cr–1Mo and 9Cr–1Mo steels are being progressively used in the making of the turbine rotors of steam power plants. Forging of these steels requires precise control of processing parameters (i.e. strain, strain rate and temperature) for a defect free product. In line with the above mentioned applications, a comparative study to analyze the hot deformation behavior of both the steels was carried out in the temperature domain of 850–1050 °C with varying strain rate (0.001–0.1 s−1) by compression test data obtained from Gleeble 3800® thermomechanical simulator up to true strain of 0.69. The flow stress behavior of hot compressed specimens was analyzed by using material constants, activation energy and formulated Zener–Hollomon parameter. Critical conditions for dynamic recrystallization (DRX) of both the steels were calculated with the help of a mathematical model developed by Poliak and Jonas. Further, the variations in critical conditions were correlated with the Zener–Hollomon parameter. For both the steels, the current study also focused on the comparison of dynamically recrystallized austenite (\(X_{DRX}\)) volume fraction with respect to true strain by applying the concept of Avrami equation. Finally, to validate the kinetics of DRX and softening mechanism, the microstructural evaluation and characterization have been carried out using optical and electron microscopy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data reused for the plotting of \(\theta\) versus σ graph for 1Cr–1Mo steel specimen [18] with the permission of IOP publishing journal

Fig. 4

Data reused for the plotting of −(\(d\theta /d\sigma\)) versus σ graph for 1Cr–1Mo steel specimen [18] with the permission of IOP publishing journal

Fig. 5

Data reused for the plotting of a \(\sigma_{c}\) versus \(\sigma_{p}\) and b \(\varepsilon_{c}\) versus \(\varepsilon_{p}\) graph for 1Cr–1Mo steel specimen [18] with the permission of IOP publishing journal

Fig. 6

Data reused for the graphs of 1Cr–1Mo steel specimen [18] with the permission of IOP publishing journal

Fig. 7

Data reused for the graphs of 1Cr–1Mo steel specimen [18] with the permission of IOP publishing journal

Fig. 8

Data reused for the graphs of 1Cr–1Mo steel specimen [18] with the permission of IOP publishing journal

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.A. Senior, Mater. Sci. Eng. A 103, 263 (1988)

    Article  Google Scholar 

  2. W. Zhong-guang, C. Laird, K. Rahka 73, 113 (1985)

    Google Scholar 

  3. D. Samantaray, C. Phaniraj, S. Mandal, A.K. Bhaduri, Mater. Sci. Eng. A 528, 1071 (2011)

    Article  CAS  Google Scholar 

  4. G.A. Guerrero, Comput. Methods Mater. Sci. 12, 152 (2012)

    Google Scholar 

  5. M. Shaban, B. Eghbali, J. Mater. Sci. Technol. 27, 359 (2011)

    Article  CAS  Google Scholar 

  6. E.I. Poliak, J.J. Jonas, ISIJ Int. 43, 684 (2003)

    Article  CAS  Google Scholar 

  7. M.J. Luton, C.M. Sellars, Acta Metall. 17, 1033 (1969)

    Article  CAS  Google Scholar 

  8. Z. Cai, H. Ji, W. Pei, X. Tang, X. Huang, J. Liu, Vacuum 165, 324 (2019)

    Article  CAS  Google Scholar 

  9. Y. Han, S. Yan, B. Yin, H. Li, X. Ran, Vacuum 148, 78 (2018)

    Article  CAS  Google Scholar 

  10. E.I. Poliakt, J.J. Jonass, Acta Metall. 44, 127 (1996)

    Google Scholar 

  11. A. Najafizadeh, J.J. Jonas, ISIJ Int. 46, 1679 (2006)

    Article  CAS  Google Scholar 

  12. G.R. Stewart, J.J. Jonas, F. Montheillet 44, 1581 (2004)

    CAS  Google Scholar 

  13. S. Solhjoo, Mater. Des. 31, 1360 (2010)

    Article  CAS  Google Scholar 

  14. B. Eghbali, Mater. Sci. Eng. A 527, 3402 (2010)

    Article  CAS  Google Scholar 

  15. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  CAS  Google Scholar 

  16. Z.S.C.F. Chen, G.W. Feng, Procedia Eng. 81, 486 (2014)

    Article  CAS  Google Scholar 

  17. A. Hadadzadeh, F. Mokdad, M.A. Wells, D.L. Chen, Mater. Sci. Eng. A 720, 180 (2018)

    Article  CAS  Google Scholar 

  18. S. Kumar and S. K. Nath, Mater. Res. Express 7, 026548 (2020)

    Article  CAS  Google Scholar 

  19. D. Samantaray, S. Mandal, A.K. Bhaduri, Mater. Des. 31, 981 (2010)

    Article  CAS  Google Scholar 

  20. D. Samantaray, C. Phaniraj, A.K. Bhaduri, S. Mandal, S.K. Albert, Mater. Sci. Eng. A 560, 170 (2013)

    Article  CAS  Google Scholar 

  21. A.Y. Churyumov, M.G. Khomutov, A.N. Solonin, A.V. Pozdniakov, T.A. Churyumova, B.F. Minyaylo, J. Mater. 74, 44 (2015)

    Article  CAS  Google Scholar 

  22. M.L. Santella, S.S. Babu, R.W. Swindeman, E.D. Specht, TMS (The Minerals, Metals & Materials Society, 2003), pp. 247–256

  23. S. Ghadar, A. Momeni, B. Tolaminejad, M. Soltanalinezhad, Mater. Sci. Eng. A 760, 394 (2019)

    Article  CAS  Google Scholar 

  24. C. Liu, M.C. Zhao, T. Unenbayar, Y.C. Zhao, B. Xie, Y. Tian, Y.Y. Shan, K. Yang, Acta Metall. Sin. (English Lett.) 32, 825 (2019)

    Article  CAS  Google Scholar 

  25. M. Shaban, B. Eghbali, Mater. Sci. Eng. A 527, 4320 (2010)

    Article  CAS  Google Scholar 

  26. M.S. Ghazani, B. Eghbali, G. Ebrahimi, Met. Mater. Int. 23, 964 (2017)

    Article  CAS  Google Scholar 

  27. R. Luo, Q. Zheng, J.J. Zhu, S. Guo, D.S. Li, G.F. Xu, X.N. Cheng, Rare Met. 38, 181 (2019)

    Article  CAS  Google Scholar 

  28. Y.L. Feng, J. Li, L.Q. Ai, B.M. Duan, Rare Met. 36, 833 (2017)

    Article  CAS  Google Scholar 

  29. Z. Hu, in Thermal Power Plants, ed. by M. Rasul (In Tech Publications, Croatia, 2012), pp. 195–226

    Google Scholar 

  30. C.M. Sellars, W.J. McTegart, Acta Metall. 14, 1136 (1966)

    Article  CAS  Google Scholar 

  31. S.V. Mehtonen, L.P. Karjalainen, D.A. Porter, Mater. Sci. Eng. A 571, 1 (2013)

    Article  CAS  Google Scholar 

  32. C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, R. Li, Mater. Des. 90, 804 (2016)

    Article  CAS  Google Scholar 

  33. H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322, 43 (2002)

    Article  Google Scholar 

  34. J.J. Uvira, J.L. Jonas, Trans. Metall. Soc. AIME 242, 1619 (1968)

    CAS  Google Scholar 

  35. Y. Xu, J.S. Liu, Y.X. Jiao, Met. Mater. Int. 25, 823 (2019)

    Article  CAS  Google Scholar 

  36. H. Gwon, S. Shin, J. Jeon, T. Song, S. Kim, B.C. De Cooman, Met. Mater. Int. 25, 594 (2019)

    Article  CAS  Google Scholar 

  37. S. Kumar, G.P. Chaudhari, S.K. Nath, Mater. Perform. Charact. 8, 20190022 (2019)

    Article  Google Scholar 

  38. Y.C. Lin, M. Chen, J. Zhong 5, 308 (2007)

    Google Scholar 

  39. Z. L. Baozhong Wang, Wantang Fu, Mater. Sci. Eng. A 487, 108 (2008)

  40. C. Wu, S. Han, Acta Metall. Sin. (English Lett.) 31, 963 (2018)

    Article  CAS  Google Scholar 

  41. N. Kumar, S. Kumar, S.K. Rajput, S.K. Nath, ISIJ Int. 57, 497 (2017)

    Article  CAS  Google Scholar 

  42. A.A. Vasilyev, S.F. Sokolov, N.G. Kolbasnikov, D.F. Sokolov, Phys. Solid State 53, 2194 (2011)

    Article  CAS  Google Scholar 

  43. L. Zhang, W. Wang, M. Babar Shahzad, Y.Y. Shan, K. Yang, Acta Metall. Sin. (English Lett.) 32, 1161 (2019)

    Article  CAS  Google Scholar 

  44. H.J. McQueen, S. Yue, N.D. Ryan, E. Fry, J. Mater. Process. Technol. 53, 293 (1995)

    Article  Google Scholar 

  45. H. Mirzadeh, M.H. Parsa, J. Alloys Compd. 614, 56 (2014)

    Article  CAS  Google Scholar 

  46. J. Yu, Z. Zhang, Q. Wang, X. Yin, J. Cui, H. Qi, J. Alloys Compd. 704, 382 (2017)

    Article  CAS  Google Scholar 

  47. C. Zhang, L. Zhang, W. Shen, Q. Xu, Y. Cui, J. Alloys Compd. 728, 1269 (2017)

    Article  CAS  Google Scholar 

  48. A. Chatterjee, A. Dutta, M.B. Sk, R. Mitra, A.K. Bhaduri, D. Chakrabarti, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48, 2410 (2017)

    Article  CAS  Google Scholar 

  49. N.D. Ryan, H.J. McQueen, Can. Metall. Q. 29, 147 (1990)

    Article  CAS  Google Scholar 

  50. H.J. Chang, A. Gaubert, M. Fivel, S. Berbenni, O. Bouaziz, S. Forest, Comput. Mater. Sci. 52, 33 (2012)

    Article  Google Scholar 

  51. A. le Bon, J. Rofes-Vernis, C. Rossard, Met. Sci. 9, 36 (1975)

    Article  Google Scholar 

  52. S.G. Hong, K.B. Kang, C.G. Park, Scr. Mater. 46, 163 (2002)

    Article  CAS  Google Scholar 

  53. A. Pandit, A. Murugaiyan, A.S. Podder, A. Haldar, D. Bhattacharjee, S. Chandra, R.K. Ray, Scr. Mater. 53, 1309 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Bharat Heavy Electricals Limited for the material, Metallurgical and Materials Engineering Department and Institute Instrumentation Centre, Indian Institute of Technology Roorkee for experimental support and FIST DST Delhi for providing Gleeble 3800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumeer K. Nath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Karmakar, A. & Nath, S.K. Comparative Assessment on the Hot Deformation Behaviour of 9Cr–1Mo Steel with 1Cr–1Mo Steel. Met. Mater. Int. 27, 3875–3890 (2021). https://doi.org/10.1007/s12540-020-00826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00826-2

Keywords

Navigation