Skip to main content
Log in

New Eutectic High-Entropy Alloys Based on Co–Cr–Fe–Mo–Ni–Al: Design, Characterization and Mechanical Properties

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

New eutectic high-entropy alloys based on novel (CoqCrvFewMoyNiz)100−xAlx alloy systems were designed using both thermodynamic and computational approaches. After considering 324 equilibrium diagrams, ten potential eutectic compositions were determined to possess a eutectic point comprising FCC and B2 phases. (Co40Cr10Fe5Mo5Ni40)82,2Al17.8 was found to have a fully eutectic structure through experimental analysis, which had a negligible error (0.23%) compared to that of the computational modeling. The XRD patterns showed that the alloy was composed of only FCC and B2 phases (with volume fractions of 73.4% and 26.6%, respectively) and did not contain σ phase, which was predicted by the computational model to appear at low temperatures. Among all other alloys, the hypereutectic (18 at% Al) alloy exhibited the highest compressive yield strength (729 MPa) and ultimate compressive strength (2844 MPa), and the hypoeutectic (16 at% Al) alloy had the highest compressive ductility (~ 39%). For all fabricated alloys (hypoeutectic, eutectic, and hypereutectic), the compressive strength and strain exceeded 2514 MPa and 27%, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol. (2006). https://doi.org/10.1016/j.surfcoat.2006.06.048

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng., A (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  3. C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Metall. Mater. Trans. A (2004). https://doi.org/10.1007/s11661-004-0254-x

    Article  Google Scholar 

  4. L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, T.J. Li, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.07.185

    Article  Google Scholar 

  5. O.N. Senkov, S.L. Semiatin, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.07.209

    Article  Google Scholar 

  6. N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.08.224

    Article  Google Scholar 

  7. H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. (2009). https://doi.org/10.1016/j.mseb.2009.05.024

    Article  Google Scholar 

  8. T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Charact. (2012). https://doi.org/10.1016/j.matchar.2012.05.005

    Article  Google Scholar 

  9. T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Sci. Eng., A (2012). https://doi.org/10.1016/j.msea.2012.06.075

    Article  Google Scholar 

  10. F. Meng, I. Baker, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.05.021

    Article  Google Scholar 

  11. G. Laplanche, O. Horst, F. Otto, G. Eggeler, E.P. George, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.05.129

    Article  Google Scholar 

  12. L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li, Intermetallics (2014). https://doi.org/10.1016/j.intermet.2013.08.016

    Article  Google Scholar 

  13. F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang, C.T. Liu, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.09.153

    Article  Google Scholar 

  14. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. (2014). https://doi.org/10.1038/srep06200

    Article  Google Scholar 

  15. Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. (2017). https://doi.org/10.1016/j.actamat.2016.11.016

    Article  Google Scholar 

  16. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today (2016). https://doi.org/10.1016/j.mattod.2015.11.026

    Article  Google Scholar 

  17. S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. (2011). https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  18. X. Yang, Y. Zhang, Mater. Chem. Phys. (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  19. A. Takeuchi, Mater. Trans. (2005). https://doi.org/10.2320/matertrans.46.2817

    Article  Google Scholar 

  20. A.T. Samaei, M.M. Mirsayar, M.R.M. Aliha, Eng. Solid Mech. (2015). https://doi.org/10.5267/j.esm.2015.1.001

    Article  Google Scholar 

  21. H.H. Yang, W.T. Tsai, J.C. Kuo, C.C. Yang, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2011.05.104

    Article  Google Scholar 

  22. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. (2011). https://doi.org/10.1063/1.3587228

    Article  Google Scholar 

  23. S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, J. Non. Cryst. Solids (2003). https://doi.org/10.1016/S0022-3093(03)00155-8

    Article  Google Scholar 

  24. W. Kohn, L.J. Sham, Phys. Rev. (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  25. M. Gao, D. Alman, Entropy (2013). https://doi.org/10.3390/e15104504

    Article  Google Scholar 

  26. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Entropy (2014). https://doi.org/10.3390/e16010494

    Article  Google Scholar 

  27. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. (2014). https://doi.org/10.1016/j.calphad.2013.10.006

    Article  Google Scholar 

  28. W. Zhao, D. Miao, Y. Zhang, Z. He, J. Iron. Steel Res. Int. (2017). https://doi.org/10.1016/S1006-706X(17)30053-5

    Article  Google Scholar 

  29. C. Tang, P. Ren, X. Chen, Phys. Lett. Sect. A Gen. At. Solid State Phys. (2019). https://doi.org/10.1016/j.physleta.2019.03.031

    Article  Google Scholar 

  30. X.D. Xu, S. Guo, T.G. Nieh, C.T. Liu, A. Hirata, M.W. Chen, Materialia (2019). https://doi.org/10.1016/j.mtla.2019.100292

    Article  Google Scholar 

  31. L. Lutterotti, P. Scardi, J. Appl. Crystallogr. (1990). https://doi.org/10.1107/S0021889890002382

    Article  Google Scholar 

Download references

Acknowledgements

Financial assistance from The Scientific and Technological Research Council of Turkey is gratefully acknowledged (Project No: MAG 216M063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Gasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Appendix 1 includes the equilibrium phase diagrams of 10 EHEAs based on (CoqCrvFewMoyNiz)100−xAlx system designed by TCHEA2 database of Thermo-Calc program using console mode. See Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18.

Fig. 9
figure 9

Calculated equilibrium phase diagram of (Co15Cr20Fe20Mo5Ni40)84.89Al15.11 EHEA

Fig. 10
figure 10

Calculated equilibrium phase diagram of (Co20Cr20Fe15Mo5Ni40)84,61Al15,39 EHEA

Fig. 11
figure 11

Calculated equilibrium phase diagram of (Co20Cr20Fe20Mo5Ni35)85,33Al14,67 EHEA

Fig. 12
figure 12

Calculated equilibrium phase diagram of (Co25Cr20Fe15Mo5Ni35)85,02Al14,98 EHEA

Fig. 13
figure 13

Calculated equilibrium phase diagram of (Co30Cr15Fe10Mo5Ni40)83,72Al16,28 EHEA

Fig. 14
figure 14

Calculated equilibrium phase diagram of (Co35Cr10Fe10Mo5Ni40)83,24Al16,76 EHEA

Fig. 15
figure 15

Calculated equilibrium phase diagram of (Co35Cr15Fe5Mo5Ni40)83,01Al16,99 EHEA

Fig. 16
figure 16

Calculated equilibrium phase diagram of (Co35Cr15Fe10Mo5Ni35)84,09Al15,91 EHEA

Fig. 17
figure 17

Calculated equilibrium phase diagram of (Co40Cr10Fe5Mo5Ni40)82,43Al17,57 EHEA

Fig. 18
figure 18

Calculated equilibrium phase diagram of (Co40Cr15Fe5Mo5Ni35)83,35Al16,65 EHEA

Appendix 2

The Scheil solidification simulation and property diagrams helps to understand the phase content and solidification sequence of HEAs. The Scheil solidification simulation and property diagrams of designed EHEAs have been prepared using TCHEA2 database of Thermo-calc program. See Figs. 19, 20, 21, 22, 23, 24, 25, 26, 27 and 28.

Fig. 19
figure 19

a Property diagram and b solidification simulation of (Co15Cr20Fe20Mo5Ni40)84.89Al15.11 EHEA

Fig. 20
figure 20

a Property diagram and b solidification simulation of (Co20Cr20Fe15Mo5Ni40)84,61Al15,39 EHEA

Fig. 21
figure 21

a Property diagram and b solidification simulation of (Co20Cr20Fe20Mo5Ni35)85,33Al14,67 EHEA

Fig. 22
figure 22

a Property diagram and b solidification simulation of (Co25Cr20Fe15Mo5Ni35)85,02Al14,98 EHEA

Fig. 23
figure 23

a Property diagram and b solidification simulation of (Co30Cr15Fe10Mo5Ni40)83,72Al16,28 EHEA

Fig. 24
figure 24

a Property diagram and b solidification simulation of (Co35Cr10Fe10Mo5Ni40)83,24Al16,76 EHEA

Fig. 25
figure 25

a Property diagram and b solidification simulation of (Co35Cr15Fe5Mo5Ni40)83,01Al16,99 EHEA

Fig. 26
figure 26

a Property diagram and b solidification simulation of (Co35Cr15Fe10Mo5Ni35)84,09Al15,91 EHEA

Fig. 27
figure 27

a Property diagram and b solidification simulation of (Co40Cr10Fe5Mo5Ni40)82,43Al17,57 EHEA

Fig. 28
figure 28

a Property diagram and b solidification simulation of (Co40Cr15Fe5Mo5Ni35)83,35Al16,65 EHEA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasan, H., Ozcan, A. New Eutectic High-Entropy Alloys Based on Co–Cr–Fe–Mo–Ni–Al: Design, Characterization and Mechanical Properties. Met. Mater. Int. 26, 1152–1167 (2020). https://doi.org/10.1007/s12540-019-00515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00515-9

Keywords

Navigation