Skip to main content
Log in

Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Eutectic and near-eutectic high entropy alloys (HEAs) have recently attracted a great deal of interest because of their promising properties, such as an excellent castability and unique combination of good ductility and high strength. However, in the absence of a phase diagram, it remains a non-trivial task to find a eutectic or near-eutectic composition for a HEA system, which usually demands a tremendous amount of efforts if a trial-and-error approach is followed. In this paper, we briefly review the thermodynamics that governs the eutectic solidification in regular binary and ternary alloys, and proceed to the discussion for the design of eutectic HEAs. Based on the data reported, we then propose an improved strategy which may enable an efficient search for the eutectic or near eutectic HEA compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wattis J A D. A Becker-Döring model of competitive nucleation. J Phys A-Math Gen, 1999, 32: 8755–8784

    Article  MathSciNet  MATH  Google Scholar 

  2. Sato T, Sayama Y. Completely and partially co-operative growth of eutectics. J Cryst Growth, 1974, 22: 259–271

    Article  Google Scholar 

  3. Goetzinger R, Barth M, Herlach D M. Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys. Acta Mater, 1998, 46: 1647–1655

    Article  Google Scholar 

  4. Zhao S, Li J F, Liu L, et al. Cellular growth of lamellar eutectics in undercooled Ag-Cu alloy. Mater Charact, 2009, 60: 519–524

    Article  Google Scholar 

  5. Jordan R M, Hunt J D. The growth of lamellar eutectic structures in the Pb-Sn and Al-CuAl2 systems. Metall Mater Trans B, 1971, 2: 3401–3410

    Article  Google Scholar 

  6. Johnson D R, Chen X F, Oliver B F, et al. Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl(Cr,Mo) eutectic systems. Intermetallics, 1995, 3: 99–113

    Article  Google Scholar 

  7. Bei H, George E P, Kenik E A, et al. Directional solidification and microstructures of near-eutectic Cr-Cr3Si alloys. Acta Mater, 2003, 51: 6241–6252

    Article  Google Scholar 

  8. Bei H, George E P. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy. Acta Mater, 2005, 53: 69–77

    Article  Google Scholar 

  9. Yang W, Felton L E, Messler R W. The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints. J Electron Mater, 1995, 24: 1465–1472

    Article  Google Scholar 

  10. Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  Google Scholar 

  11. Ma S G, Zhang S F, Qiao J W, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics, 2014, 54: 104–109

    Article  Google Scholar 

  12. Shun T T, Du Y C. Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J Alloy Compd, 2009, 479: 157–160

    Article  Google Scholar 

  13. Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater, 2014, 68: 214–228

    Article  Google Scholar 

  14. Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys. Jom-Us, 2014, 66: 2030–2042

    Article  Google Scholar 

  15. Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Effect of V content on microstructure and mechanical properties of the CoCr-FeMnNiVx high entropy alloys. J Alloy Compd, 2015, 628: 170–185

    Article  Google Scholar 

  16. Hsu C Y, Wang W R, Tang W Y, et al. Microstructure and mechanical properties of new AlCoxCrFeMo0.5 Ni high-entropy alloys. Adv Eng Mater, 2010, 12: 44–49

    Article  Google Scholar 

  17. Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi highentropy alloy. Acta Mater, 2013, 61: 5743–5755

    Article  Google Scholar 

  18. Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18: 1758–1765

    Article  Google Scholar 

  19. Wang F, Zhang Y, Chen G, et al. Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy. Int J Mod Phys B, 2009, 23: 1254–1259

    Article  Google Scholar 

  20. Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep, 2015, 4: 6200

    Article  Google Scholar 

  21. Guo S, Ng C, Liu C T. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloy Compd, 2013, 557: 77–81

    Article  Google Scholar 

  22. Jiang H, Zhang H, Huang T, et al. Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mater Des, 2016, 109: 539–546

    Article  Google Scholar 

  23. Jiang L, Lu Y, Dong Y, et al. Effects of Nb addition on structural evolution and properties of the CoFeNi2V0.5 high-entropy alloy. Appl Phys A, 2015, 119: 291–297

    Article  Google Scholar 

  24. He F, Wang Z, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloy Compd, 2016, 656: 284–289

    Article  Google Scholar 

  25. Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and neareutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater, 2017, 124: 143–150

    Article  Google Scholar 

  26. Jiang L, Cao Z Q, Jie J C, et al. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. J Alloy Compd, 2015, 649: 585–590

    Article  Google Scholar 

  27. Zhu J M, Fu H M, Zhang H F, et al. Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater Sci Eng-A, 2010, 527: 6975–6979

    Article  Google Scholar 

  28. Mishra A K, Samal S, Biswas K. Solidification behaviour of Ti-Cu-Fe-Co-Ni high entropy alloys. Trans Ind Inst Met, 2012, 65: 725–730

    Article  Google Scholar 

  29. He F, Wang Z, Shang X, et al. Stability of lamellar structures in CoCr-FeNiNbx eutectic high entropy alloys at elevated temperatures. Mater Des, 2016, 104: 259–264

    Article  Google Scholar 

  30. Guo S, Ng C, Liu C T. Sunflower-like solidification microstructure in a near-eutectic high-entropy alloy. Mater Res Lett, 2013, 1: 228–232

    Article  Google Scholar 

  31. Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater, 2013, 61: 4887–4897

    Article  Google Scholar 

  32. Wani I S, Bhattacharjee T, Sheikh S, et al. Ultrafine-grained AlCoCr-FeNi2.1 eutectic high-entropy alloy. Mater Res Lett, 2016, 4: 174–179

    Article  Google Scholar 

  33. Dong Y, Lu Y, Kong J, et al. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. J Alloy Compd, 2013, 573: 96–101

    Article  Google Scholar 

  34. Boyer H E, Gall T L. Metals Handbook Desk Edition. Metals Park: American Society for Metals, 1985

    Google Scholar 

  35. Ma S G, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng-A, 2012, 532: 480–486

    Article  Google Scholar 

  36. Tong C J, Chen Y L, Yeh J W, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mat Trans A, 2005, 36: 881–893

    Article  Google Scholar 

  37. Ivashenko A V, Titov V V, Kovshev E I. Liquid crystalline compounds: III on applicability of Schröder-Van Laar equations to liquid crystals mixtures. Mol Crysts Liquid Crysts, 1976, 33: 195–200

    Article  Google Scholar 

  38. Lee H-G. Chemical Thermodynamics for Metals and Materials. Place Published: Imperial College Press, 1999

    Book  Google Scholar 

  39. Petzow G, Effenberg G. Ternary alloys. A comprehensive compendium of evaluated constitutional data and phase diagrams. 1991, 4

    Google Scholar 

  40. Dinsdale A T. SGTE data for pure elements. Calphad, 1991, 15: 317–425

    Article  Google Scholar 

  41. Ternary Phase Diagrams for Materials Science. Place Published: Elsevier Science & Technology, 2001

  42. Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects. Mater Today, 2016, 19: 349–362

    Article  Google Scholar 

  43. He Q F, Ye Y F, Yang Y. The configurational entropy of mixing of metastable random solid solution in complex multicomponent alloys. J Appl Phys, 2016, 120: 154902

    Article  Google Scholar 

  44. Wang D, Tan H, Li Y. Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater, 2005, 53: 2969–2979

    Article  Google Scholar 

  45. Ding S, Liu Y, Li Y, et al. Combinatorial development of bulk metallic glasses. Nat Mater, 2014, 13: 494–500

    Article  Google Scholar 

  46. Yeh J W. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65: 1759–1771

    Article  Google Scholar 

  47. Ye Y F, Liu X D, Wang S, et al. The general effect of atomic size misfit on glass formation in conventional and high-entropy alloys. Intermetallics, 2016, 78: 30–41

    Article  Google Scholar 

  48. Takeuchi A, Amiya K, Wada T, et al. Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy, 2013, 15: 3810–3821

    Article  MathSciNet  Google Scholar 

  49. Ye Y F, Wang Q, Lu J, et al. The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics, 2015, 59: 75–80

    Article  Google Scholar 

  50. Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci-Mater Int, 2011, 21: 433–446

    Article  Google Scholar 

  51. Zhang Y, Lu Z P, Ma S G, et al. Guidelines in predicting phase formation of high-entropy alloys. MRC, 2014, 4: 57–62

    Article  Google Scholar 

  52. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132: 233–238

    Article  Google Scholar 

  53. Zhang Y, Peng W. Microstructural control and properties optimization of high-entrop alloys. Procedia Eng, 2012, 27: 1169–1178

    Article  MathSciNet  Google Scholar 

  54. Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

    Article  Google Scholar 

  55. Mansoori G A, Carnahan N F, Starling K E, et al. Equilibrium thermodynamic properties of the mixture of hard spheres. J Chem Phys, 1971, 54: 1523–1525

    Article  Google Scholar 

  56. Ye Y F, Liu C T, Yang Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater, 2015, 94: 152–161

    Article  Google Scholar 

  57. Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 2008, 10: 534–538

    Article  Google Scholar 

  58. Troparevsky M C, Morris J R, Kent P R C, et al. Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X, 2015, 5: 011041

    Google Scholar 

  59. Highmore R J, Greer A L. Eutectics and the formation of amorphous alloys. Nature, 1989, 339: 363–365

    Article  Google Scholar 

  60. Turnbull D. Under what conditions can a glass be formed? Contemp Phys, 1969, 10: 473–488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., He, Q. & Yang, Y. Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys. Sci. China Technol. Sci. 61, 159–167 (2018). https://doi.org/10.1007/s11431-017-9051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9051-6

Keywords

Navigation