Skip to main content
Log in

Investigation on Fabrication and Microstructure of Ti–6Al–4V Alloy Hollow Spheres by Powder Metallurgy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the Ti–6Al–4V alloy hollow spheres were prepared by powder metallurgy method under different sintering temperatures (1200 °C, 1250 °C, 1300 °C, 1350 °C and 1400 °C). And the density, shrinkage and microstructure of hollow spheres were tested by Archimedes drainage method, diameter measurement, optical microscope and scanning electron microscope, respectively. The results show that the density and shrinkage of hollow spheres increase gradually with the sintering temperature increasing, while the porosity of the shell of hollow spheres decreased along with the increase of sintering temperature. When the sintering temperature is 1400 °C, the hollow sphere has the largest density of 2.10 g/cm3, the largest shrinkage of 22.0% and the smallest porosity of 14.2%. By comparing the micro-morphology and properties under different temperatures, when the sintering process lasted for 180 min at 1400 °C, the Ti–6Al–4V hollow spheres have the smallest porosity and the largest density.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Rabiei, A.T. O’Neill, A study on processing of a composite metal foam via casting. Mater. Sci. Eng. A 404, 159–164 (2005). https://doi.org/10.1016/j.msea.2005.05.089

    Article  CAS  Google Scholar 

  2. L.J. Vendra, A. Rabiei, A study on aluminum–steel composite metal foam processed by casting. Mater. Sci. Eng. A 465, 59–67 (2007). https://doi.org/10.1016/j.msea.2007.04.037

    Article  CAS  Google Scholar 

  3. L.J. Vendra, A. Rabiei, N. Reese, N. Young, B.P. Neville, Processing and characterization of a new composite metal foam. Mater. Trans. 47, 2148–2153 (2006). https://doi.org/10.2320/matertrans.47.2148

    Article  CAS  Google Scholar 

  4. B.P. Neville, A. Rabiei, Composite metal foams processed through powder metallurgy. Mater. Des. 29, 388–396 (2008). https://doi.org/10.1016/j.matdes.2007.01.026

    Article  CAS  Google Scholar 

  5. A. Rabiei, L.J. Vendra, A comparison of composite metal foam's properties and other comparable metal foams. Mater. Lett. 63, 533–536 (2009). https://doi.org/10.1016/j.matlet.2008.11.002

    Article  CAS  Google Scholar 

  6. H. Goehler, U. Jehring, J. Meinert, R. Hauser, Functionalized Metallic Hollow Sphere Structures. Adv. Eng. Mater. 16, 335–339 (2014). https://doi.org/10.1002/adem.201300057

    Article  CAS  Google Scholar 

  7. J. Marx, A. Rabiei, Overview of composite metal foams and their properties and performance. Adv. Eng. Mater. 19, 1600776 (2017). https://doi.org/10.1002/adem.201600776

    Article  CAS  Google Scholar 

  8. W.S. Sanders, L.J. Gibson, Mechanics of hollow sphere foams. Mater. Sci. Eng. A 347, 70–85 (2003). https://doi.org/10.1016/S0921-5093(02)00583-X

    Article  Google Scholar 

  9. O. Friedl, C. Motz, H. Peterlik, S. Puchegger, N. Reger, R. Pippan, Experimental investigation of mechanical properties of metallic hollow sphere structures. Metall. Mater. Trans. B 39, 135–146 (2008). https://doi.org/10.1007/s11663-007-9098-2

    Article  CAS  Google Scholar 

  10. M. Vesenjak, Z. Ren, T. Fiedler, A. Öchsner, Impact behavior of composite hollow sphere structures. J. Compos. Mater. 43, 2491–2505 (2009). https://doi.org/10.1177/0021998309094970

    Article  Google Scholar 

  11. J.A. Brown, L.J. Vendra, A. Rabiei, Bending properties of Al–steel and steel–steel composite metal foams. Metall. Mater. Trans. A 41, 2784–2793 (2010). https://doi.org/10.1007/s11661-010-0343-y

    Article  CAS  Google Scholar 

  12. L.J. Vendra, A. Rabiei, Evaluation of modulus of elasticity of composite metal foams by experimental and numerical techniques. Mater. Sci. Eng. A 527, 1784–1790 (2010). https://doi.org/10.1016/j.msea.2009.11.004

    Article  CAS  Google Scholar 

  13. L.J. Vendra, J.A. Brown, A. Rabiei, Effect of processing parameters on the microstructure and mechanical properties of Al–steel composite foam. J. Mater. Sci. 46, 4574–4581 (2011). https://doi.org/10.1007/s10853-011-5356-4

    Article  CAS  Google Scholar 

  14. A. Rabiei, M. Garcia-Avila, Effect of various parameters on properties of composite steel foams under variety of loading rates. Mater. Sci. Eng. A 564, 539–547 (2013). https://doi.org/10.1016/j.msea.2012.11.108

    Article  CAS  Google Scholar 

  15. Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, A. Rabiei, High strain rate behavior of composite metal foams. Mater. Sci. Eng. A 631, 248–257 (2015). https://doi.org/10.1016/j.msea.2015.02.027

    Article  CAS  Google Scholar 

  16. J. Marx, M. Portanova, A. Rabiei, A study on blast and fragment resistance of composite metal foams through experimental and modeling approaches. Compos. Struct. 194, 652–661 (2018). https://doi.org/10.1016/j.compstruct.2018.03.075

    Article  Google Scholar 

  17. M. Garcia-Avila, M. Portanova, A. Rabiei, Ballistic performance of composite metal foams. Compos. Struct. 125, 202–211 (2015). https://doi.org/10.1016/j.compstruct.2015.01.031

    Article  Google Scholar 

  18. S. Chen, J. Marx, A. Rabiei, Experimental and computational studies on the thermal behavior and fire retardant properties of composite metal foams. Int. J. Therm. Sci. 106, 70–79 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.03.005

    Article  CAS  Google Scholar 

  19. S. Chen, M. Bourham, A. Rabiei, Applications of open-cell and closed-cell metal foams for radiation shielding. Procedia Mater. Sci. 4, 293–298 (2014). https://doi.org/10.1016/j.mspro.2014.07.560

    Article  CAS  Google Scholar 

  20. S. Chen, M. Bourham, A. Rabiei, Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams. Radiat. Phys. Chem. 117, 12–22 (2015). https://doi.org/10.1016/j.radphyschem.2015.07.003

    Article  CAS  Google Scholar 

  21. S. Chen, M. Bourham, A. Rabiei, Neutrons attenuation on composite metal foams and hybrid open-cell Al foam. Radiat. Phys. Chem. 109, 27–39 (2015). https://doi.org/10.1016/j.radphyschem.2014.11.003

    Article  CAS  Google Scholar 

  22. O. Andersen, U. Waag, L. Schneider, G. Stephani, B. Kieback, Novel metallic hollow sphere structures. Adv. Eng. Mater. 2, 192–195 (2000). https://doi.org/10.1002/(SICI)1527-2648(200004)2:4%3c192:AID-ADEM192%3e3.0.CO;2-%23

    Article  CAS  Google Scholar 

  23. C. Augustin, W. Hungerbach, Production of hollow spheres (HS) and hollow sphere structures (HSS). Mater. Lett. 63, 1109–1112 (2009). https://doi.org/10.1016/j.matlet.2009.01.015

    Article  CAS  Google Scholar 

  24. M. Behnam, A.S. Golezani, M.M. Lima, Optimization of surface quality and shell porosity in low carbon steel hollow spheres produced by powder metallurgy. Powder Technol. 235, 1025–1029 (2013). https://doi.org/10.1016/j.powtec.2012.11.038

    Article  CAS  Google Scholar 

  25. H.R. Davari, H. Gholamzadeh, S.A. Dehghan, M.H. Paydar, Effect of sintering parameters (time and temperature) upon the fabrication process of organic binder-based metallic hollow sphere. Powder Metall. 60, 1–8 (2017). https://doi.org/10.1080/00325899.2017.1355424

    Article  CAS  Google Scholar 

  26. N.K. Gupta, G.L. Easwara Prasad, S.K. Gupta, Axial compression of metallic spherical shells between rigid plates. Thin Wall. Struct. 34, 21–41 (1999). https://doi.org/10.1016/S0263-8231(98)00049-4

    Article  Google Scholar 

  27. M. Borovinšek, M. Vesenjak, Z. Ren, Estimating the base material properties of sintered metallic hollow spheres by inverse engineering procedure. Mech. Mater. 100, 22–30 (2016). https://doi.org/10.1016/j.mechmat.2016.06.001

    Article  Google Scholar 

  28. J. Song, Q. Sun, Z. Yang, S. Luo, X. Xiao, S.R. Arwade, G. Zhang, Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres. Mater. Sci. Eng. A 688, 134–145 (2017). https://doi.org/10.1016/j.msea.2017.01.105

    Article  CAS  Google Scholar 

  29. J. Song, Q. Sun, S. Luo, S.R. Arwade, S. Gerasimidis, Y. Guo, G. Zhang, Compression behavior of individual thin-walled metallic hollow spheres with patterned distributions of microporosity. Mater. Sci. Eng. A 734, 453–475 (2018). https://doi.org/10.1016/j.msea.2018.08.016

    Article  CAS  Google Scholar 

  30. P. Yu, G. Stephani, S.D. Luo, H. Goehler, M. Qian, Microwave-assisted fabrication of titanium hollow spheres with tailored shell structures for various potential applications. Mater. Lett. 86, 84–87 (2012). https://doi.org/10.1016/j.matlet.2012.07.022

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Nos. 51671065 and 11402060), the tackling the key problems of Double Hundred Technology (No. JCKY2018604C004) and the Fundamental Research funds for the Central Universities (No. HEUCFP201730).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhuan Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Jiang, F., Wang, C. et al. Investigation on Fabrication and Microstructure of Ti–6Al–4V Alloy Hollow Spheres by Powder Metallurgy. Met. Mater. Int. 27, 1083–1091 (2021). https://doi.org/10.1007/s12540-019-00462-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00462-5

Keywords

Navigation