Skip to main content
Log in

Preparation of Spherical Porous and Spherical Ti6Al4V Powder by Copper-Assisted Spheroidization Method

  • Powder-based Functional Materials for Extreme Environments: Processing and Characterization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The properties of impurity content, particle size distribution, and sphericity of the spherical Ti6Al4V powder are very important in the field of additive manufacturing. Currently, there are some shortcomings in the common method of preparing high-quality Ti6Al4V alloy spherical powders. A copper-assisted spheroidization method for preparation of spherical Ti6Al4V powder was developed in this study. The process involved induction melting to prepare a high brittleness intermetallic Cu-Ti-Al-V pre-alloy with low melting point. The solid-liquid interface dewetting method was then used to obtain the spherical Cu-Ti-Al-V particles, which were further processed using dealloying to obtain spherical porous Ti6Al4V powder. Finally, the spherical Ti6Al4V powder was obtained by undergoing combined sintering and deoxidizing steps. The study investigated the morphologies, structure, and composition of the preparation processes. The spherical Ti6Al4V powder prepared by this method possesses controllable composition and particle size distribution, along with low oxygen content, potentially meeting the requirements of additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996).

    Article  Google Scholar 

  2. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, 1st edn. (Wiley, Weinheim, 2003), pp1–36.

    Book  Google Scholar 

  3. G. Lütjering and J.C. Williams, Titanium, 2nd edn. (Springer Press, Berlin, 2007), pp15–52.

    Google Scholar 

  4. A.R. McAndrewk, P.A. Colegrove, C. Bühr, B.C.D. Flipo, and A. Vairis, Prog. Mater. Sci. 92, 225 (2018).

    Article  Google Scholar 

  5. L.C. Zhang and H. Attar, Adv. Eng. Mater. 18, 463 (2016).

    Article  CAS  Google Scholar 

  6. J. Dawes, R. Bowerman, and R. Trepleton, Johns. Matthey Technol. 59, 243 (2016).

    Article  Google Scholar 

  7. M. Attaran, Bus. Horiz. 60, 677 (2017).

    Article  Google Scholar 

  8. B. Berman, Bus. Horiz. 55, 155 (2012).

    Article  Google Scholar 

  9. Q. Ma, Mater. China 30, 50 (2011).

    CAS  Google Scholar 

  10. F.H. Froes and B. Dutta, Adv. Mater. Res. 1019, 19 (2014).

    Article  CAS  Google Scholar 

  11. C. Chua, S.L. Sing, and C.K. Chua, Virtual Phys. Prototyp. 18, e2138463 (2022).

    Article  Google Scholar 

  12. C.Y. Lu, X.D. Jia, J. Lee, and J. Shi, Virtual Phys. Prototyp. 17, 787 (2022).

    Article  Google Scholar 

  13. D.N. Luu, W. Zhou, and S.M.L. Nai, Mater. Sci. Addit. Manuf. 1, 25 (2022).

    Article  Google Scholar 

  14. J. Gardan, Int. J. Prod. Res. 54, 3118 (2016).

    Article  Google Scholar 

  15. M. Boulos, Nucl. Eng. Technol. 44, 1 (2012).

    Article  CAS  Google Scholar 

  16. P. Sun, Z.Z. Fang, Y. Xia, Y. Zhang, and C.S. Zhou, Powder Technol. 301, 331 (2016).

    Article  CAS  Google Scholar 

  17. W. Xu, S.Q. Xiao, G. Chen, C.C. Liu, and X. Qu, J. Mater. Sci. Technol. 35, 322 (2019).

    Article  CAS  Google Scholar 

  18. C.F. Yolton and F.H.S. Froes, Titanium Powder Metall. 2, 21 (2015).

    Article  Google Scholar 

  19. G. Wegmann, R. Gerling, and F.P. Schimansky, Acta Mater. 51, 741 (2003).

    Article  ADS  CAS  Google Scholar 

  20. G. Chen, S.Y. Zhao, P. Tan, J. Wang, C.S. Xiang, and H.P. Tang, Powder Technol. 333, 38 (2018).

    Article  CAS  Google Scholar 

  21. G. Chen, Q. Zhou, S.Y. Zhao, J.O. Yin, P. Tan, Z.F. Li, Y. Ge, J. Wang, and H.P. Tang, Powder Technol. 330, 425 (2018).

    Article  CAS  Google Scholar 

  22. N.A. Yefimov, Handbook of Non-ferrous Metal Powders: Technologies and Applications, 1st edn. (Elsevier Press, Burlington, 2009), pp125–185.

    Google Scholar 

  23. J.J. Tang, Y. Nie, Q. Lei, and Y.P. Li, Adv. Powder Technol. 30, 2330 (2019).

    Article  CAS  Google Scholar 

  24. Z.Z. Cheng, C.L. Lei, H.F. Huang, S.L. Tang, and Y.W. Du, Mater. Des. 97, 324 (2016).

    Article  CAS  Google Scholar 

  25. C.L. Lei, H.F. Huang, Z.Z. Cheng, S.L. Tang, and Y.W. Du, Appl. Surf. Sci. 357, 167 (2015).

    Article  ADS  CAS  Google Scholar 

  26. Y. Huang, J. Qian, D.S. Dong, Y.G. Shi, Y.W. Du, and S.L. Tang, J. Magn. Magn. Mater. 543, 168621 (2022).

    Article  CAS  Google Scholar 

  27. X.J. Liao, Q. Lai, and S.L. Zhang, Iron Steel Vanadium Titan. 05, 1 (2017).

    CAS  Google Scholar 

  28. J. Qian, D.S. Dong, G. Wei, M. Shi, and S.L. Tang, Powder Technol. 411, 117927 (2022).

    Article  CAS  Google Scholar 

  29. J. Qian, B. Yin, D.S. Dong, G. Wei, M. Shi, and S.L. Tang, J. Mater. Res. Technol. 25, 1860 (2023).

    Article  CAS  Google Scholar 

  30. L. Arijit, K. Bhanumurthy, G. Kale, and B. Kashyap, Int. J. Mater. Res. 103, 661 (2012).

    Article  Google Scholar 

  31. S.Y. Liu and Y.C. Shin, Mater. Des. 164, 107552 (2019).

    Article  CAS  Google Scholar 

  32. F. Gomes, H. Puga, J. Barbosa, and C.S. Ribeiro, J. Mater. Sci. 46, 4922 (2011).

    Article  ADS  CAS  Google Scholar 

  33. Y.M. Wei, Z.G. Lu, X.Y. Li, and X. Guo, Rare Met. 38, 327 (2019).

    Article  CAS  Google Scholar 

  34. K.T. Jacob and S. Gupta, JOM 61, 56 (2009).

    Article  ADS  CAS  Google Scholar 

  35. T. Tanaka, T. Ouchi, and T.H. Okabe, Mater. Trans. 61, 1967 (2020).

    Article  CAS  Google Scholar 

  36. X.Y. Guo, C.X. Zhang, Q.H. Tian, and D.W. Yu, Mater. Today Commun. 26, 102007 (2021).

    Article  CAS  Google Scholar 

  37. M. Tsuda, T. Wada, and H. Kato, J. Appl. Phys. 114, 113503 (2013).

    Article  ADS  Google Scholar 

  38. I.V. Okulov, A.V. Okulov, A.S. Volegov, and J. Markmann, Scr. Mater. 154, 68 (2018).

    Article  CAS  Google Scholar 

  39. Y. Zhang, Z.Z. Fang, P. Sun, Y. Xia, M. Free, Z. Huang, H. Lefler, T.Y. Zhang, and J. Guo, Chem. Eng. J. 327, 169 (2017).

    Article  CAS  Google Scholar 

  40. A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).

    Article  CAS  Google Scholar 

  41. X.Y. Guo, Z.W. Dong, Y. Xia, P.D. Liu, H.N. Liu, Q.H. Tian, and T. Nonferr, Met. Soc. 32, 1351 (2022).

    CAS  Google Scholar 

  42. J.S. Yan, Z.H. Dou, and L.P. Niu, Rare Met. Mater. Eng. 50, 2973 (2021).

    CAS  Google Scholar 

  43. J.J. Sun, M. Guo, K.Y. Shi, and D.D. Gu, Mater. Sci. Addit. Manuf. 1, 11 (2022).

    Google Scholar 

  44. S. Yim, H. Bian, K. Aoyagi, K. Yamanaka, and A. Chiba, Addit. Manuf. 49, 102489 (2022).

    CAS  Google Scholar 

  45. M. Sehhat, A. Sutton, C. Hung, B. Brown, R. O’Malley, J.K. Park, and M. Leu, Mater. Sci. Addit. Manuf. 1, 1 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51671102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolong Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Authors state that the research was conducted according to ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Zhang, L. & Tang, S. Preparation of Spherical Porous and Spherical Ti6Al4V Powder by Copper-Assisted Spheroidization Method. JOM 76, 1276–1283 (2024). https://doi.org/10.1007/s11837-023-06295-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06295-3

Navigation