Skip to main content
Log in

Physics-Based Constitutive Model of Porous Materials for Die/Isostatic Compaction of Metallic Powders

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A physics-based constitutive model of porous materials is proposed to enhance the accuracy of numerical analysis in die/isostatic compaction. The correlation between the yield function and equivalent work equation was derived, and the numerical integration method was modified with the correlation. It is found that the apparent work of porous materials is lower than the product of relative density and equivalent work of solid materials at the beginning of compaction, implying the kinematic motion of powders and the resultant particle rearrangement. For verification of the proposed model, finite element analyses were performed for the die/isostatic compaction of three metal powders: Ti, SUS316L, and Al6061 powders. Compared with two conventional constitutive models, the proposed model improves the accuracy of the densification behaviors in all the stage during die/isostatic compaction. Furthermore, this study is a groundwork to link the densification behavior of porous materials at bulk scale to the particulate behavior of powders at microscale.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.D. Soane, P.S. Blackwell, J.W. Dickson, D.J. Painter, Soil Tillage Res. 1, 373 (1980/1981)

  2. T. Saito, JOM 56, 33 (2004)

    Article  CAS  Google Scholar 

  3. J.R. Pickens, J. Mater. Sci. 16, 1437 (1981)

    Article  CAS  Google Scholar 

  4. C.L. Martin, D. Bouvard, G. Delette, J. Am. Ceram. Soc. 89, 3379 (2006)

    Article  CAS  Google Scholar 

  5. P. Pizette, C.L. Martin, G. Delette, P. Sornay, F. Sans, Powder Technol. 198, 240 (2010)

    Article  CAS  Google Scholar 

  6. B. Harthong, J.-F. Jerier, P. Doremus, D. Imbault, F.-V. Donze, Int. J. Solids Struct. 46, 3357 (2009)

    Article  Google Scholar 

  7. B. Harthong, J.-F. Jerier, V. Richefeu, B. Chareyre, P. Doremus, D. Imbault, F.-V. Donze, Int. J. Mech. Sci. 61, 32 (2012)

    Article  Google Scholar 

  8. A. Salvadori, S. Lee, A. Gillman, K. Matous, C. Shuck, A. Mukasyan, M.T. Beason, I.E. Gunduz, S.F. Son, Mech. Mater. 112, 56 (2017)

    Article  Google Scholar 

  9. Y. Huang, J. Li, Y. Teng, X. Dong, X. Wang, G. Kong, T. Song, Powder Technol. 320, 668 (2017)

    Article  CAS  Google Scholar 

  10. L. Kempton, D. Pinson, S. Chew, P. Zulli, A. Yu, Powder Technol. 320, 586 (2017)

    Article  CAS  Google Scholar 

  11. H.A. Kuhn, C.L. Downey, Int. J. Powder Metall. 7(1), 15 (1971)

    CAS  Google Scholar 

  12. S. Shima, M. Oyane, Int. J. Mech. Sci. 18, 285 (1976)

    Article  Google Scholar 

  13. S.M. Doraivelu, H.L. Gegel, J.S. Gunasekera, J.C. Malas, J.T. Morgan, J.F. Thomas, Int. J. Mech. Sci. 26(9/10), 527 (1984)

    Article  Google Scholar 

  14. D.N. Lee, H.S. Kim, Powder Metall. 35, 275 (1992)

    Article  CAS  Google Scholar 

  15. H.S. Kim, Meter. Sci. Eng. A 251, 100 (1998)

    Article  Google Scholar 

  16. D.C. Drucker, W. Prager, Q. Appl. Math. 10, 157 (1952)

    Article  Google Scholar 

  17. J. Almanstotter, Int. J. Refract. Met. Hard Mater. 50, 290 (2015)

    Article  Google Scholar 

  18. M. Zhou, S. Huang, J. Hu, Y. Lei, Y. Xiao, B. Li, S. Yan, F. Zou, Powder Technol. 305, 183 (2017)

    Article  CAS  Google Scholar 

  19. A.C.F. Cocks, I.C. Sinka, Mech. Mater. 39, 392 (2007)

    Article  Google Scholar 

  20. I.C. Sinka, A.C.F. Cocks, Mech. Mater. 39, 404 (2007)

    Article  Google Scholar 

  21. H. Diarra, V. Mazel, V. Busignies, P. Tchoreloff, Powder Technol. 320, 530 (2017)

    Article  CAS  Google Scholar 

  22. N.A. Fleck, J. Mech. Phys. Solids 43, 1409 (1995)

    Article  CAS  Google Scholar 

  23. A.R. Akisanya, A.C.F. Cocks, N.A. Fleck, Int. J. Mech. Sci. 39, 1315 (1997)

    Article  Google Scholar 

  24. I. Sridhar, N.A. Fleck, Acta Mater. 48, 3341 (2000)

    Article  CAS  Google Scholar 

  25. N. Aravas, Int. J. Numer. Methods Eng. 24, 1395 (1987)

    Article  Google Scholar 

  26. H.S. Kim, Y. Estrin, E.Y. Gutmanas, C.K. Rhee, Mater. Sci. Eng. A 307, 67 (2001)

    Article  Google Scholar 

  27. I.F. Martynova, M.S. Shtern, Soviet Powder Metall. Met. Ceram. 17, 17 (1978)

    Article  Google Scholar 

  28. G.M. Zhdanovich, Theory of Compacting of Metal Powders (Foreign Technology Division Wright-Patterson Air Force Base, Dayton, 1971)

    Google Scholar 

  29. H.A. Kuhn, in Powder Metallurgy Processing: The Techniques and Analyses, ed. by H.A. Kuhn, A. Lawley (Acadamic Press, New York, 1978), p. 99

    Google Scholar 

  30. M.S. Koval’chenko, Powder Metall. Metal Ceram. 32(3), 268 (1993)

    Article  Google Scholar 

  31. Z.L. Zhang, Comput. Methods Appl. Mech. Eng. 121, 29 (1995)

    Article  Google Scholar 

  32. Z.L. Zhang, Comput. Methods Appl. Mech. Eng. 121, 15 (1995)

    Article  Google Scholar 

  33. S.B. Biner, W.A. Spitzig, Acta Metall. Mater. 38(4), 603 (1990)

    Article  CAS  Google Scholar 

  34. Y.S. Kwon, H.T. Lee, K.T. Kim, J. Eng. Mater. Technol. 119, 366 (1997)

    Article  CAS  Google Scholar 

  35. S.C. Lee, K.T. Kim, Int. J. Mech. Sci. 44, 1295 (2002)

    Article  Google Scholar 

  36. H. Mecking, U.F. Kocks, Acta Matall. 29, 1865 (1981)

    Article  CAS  Google Scholar 

  37. Y. Estrin, in Unified Constitutive Laws of Plastic Deformation, ed. by A.S. Krausz, K. Krausz (Academic Press, San Diego, 1996), p. 69

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1A2A1A17069427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seong, Y., Yim, D., Jang, M.J. et al. Physics-Based Constitutive Model of Porous Materials for Die/Isostatic Compaction of Metallic Powders. Met. Mater. Int. 26, 221–229 (2020). https://doi.org/10.1007/s12540-019-00317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00317-z

Keywords

Navigation