Skip to main content
Log in

Computational Analysis of the Explosive Compaction Fabrication Process of Cylindrical Uni-directional Porous Copper

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The explosive compaction fabrication process of cylindrical uni-directional porous copper, consisting of an outer pipe completely filled with smaller inner pipes, was investigated by experimental and computational simulations to analyze and optimize the fabrication process conditions. The computational simulations were carried out using a two-dimensional model, mimicking the transverse cross-section of fabricated specimens. The computational simulation results revealed that the velocity of the outer pipe, which cannot be experimentally measured, was insufficient for explosive welding and that the walls of the inner pipes had the potential to fail depending on their initial positioning and thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted from Hokamoto et al. [4], with permission from Elsevier

Fig. 4
Fig. 5

Reprinted from Vesenjak et al. [5], with permission from Elsevier

Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Banhart, Prog. Mater. Sci. 46, 559–632 (2005)

    Article  Google Scholar 

  2. V. Shapovalov, MRS Bull. 19, 24–29 (1994)

    Article  Google Scholar 

  3. H. Nakajima, Prog. Mater Sci. 52, 1091–1173 (2007)

    Article  Google Scholar 

  4. K. Hokamoto, M. Vesenjak, Z. Ren, Mater. Lett. 137, 323–327 (2014)

    Article  Google Scholar 

  5. M. Vesenjak, K. Hokamoto, M. Sakamoto, T. Nishi, L. Krstulović-Opara, Z. Ren, Mater. Des. 90, 867–880 (2016)

    Article  Google Scholar 

  6. T. Fiedler, M. Borovinšek, K. Hokamoto, M. Vesenjak, Int. J. Heat Mass Transf. 83, 366–371 (2015)

    Article  Google Scholar 

  7. M. Vesenjak, K. Hokamoto, S. Matsumoto, Y. Marumo, Z. Ren, Mater. Lett. 170, 39–43 (2016)

    Article  Google Scholar 

  8. B. Crossland, Explosive Welding of Metals and Its Application (Clarendon Press, Oxford, 1982), pp. 84–129

    Google Scholar 

  9. K. Hokamoto, K. Shimomiya, M. Nishi, L. Krstulovic-Opara, M. Vesenjak, Z. Ren, J. Mater. Process. Technol. 251, 262–266 (2017)

    Article  Google Scholar 

  10. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, W.J. Carter, High-Velocity Impact Phenomena (Academic Press, New York, 1970), pp. 294–419

    Google Scholar 

  11. G.R. Johnson, W.H. Cook, Proceedings of the 7th International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541–574

  12. Y. Morizono, T. Fukuyama, M. Matsuda, S. Tsurekawa, Mater. Trans. 52, 2178–2183 (2011)

    Article  Google Scholar 

  13. E.L. Lee, H.C. Hornig, J.W. Kury, Adiabatic Expansion of High Explosive Detonation Products (UCRL-50422 Lawrence Livermore National Laboratory, California, 1968)

  14. M. Fujita, A. Chiba, I. Fukuda, H. Osaka, F. Baba, T. Manabe, J. Ind. Explos. Soc. Kogyo Kayaku 48, 176–182 (1983). (in Japanese)

    Google Scholar 

  15. R. Prümmer, Explosive Compaction of Powders: Principle and Prospects. Science of Sintering (Springer, New York, 1989), pp. 267–278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Nishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishi, M., Oshita, M., Ulbin, M. et al. Computational Analysis of the Explosive Compaction Fabrication Process of Cylindrical Uni-directional Porous Copper. Met. Mater. Int. 24, 1143–1148 (2018). https://doi.org/10.1007/s12540-018-0059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0059-x

Keywords

Navigation