Advertisement

Metals and Materials International

, Volume 24, Issue 5, pp 1143–1148 | Cite as

Computational Analysis of the Explosive Compaction Fabrication Process of Cylindrical Uni-directional Porous Copper

  • Masatoshi Nishi
  • Masaki Oshita
  • Miran Ulbin
  • Matej Vesenjak
  • Zoran Ren
  • Kazuyuki Hokamoto
Article

Abstract

The explosive compaction fabrication process of cylindrical uni-directional porous copper, consisting of an outer pipe completely filled with smaller inner pipes, was investigated by experimental and computational simulations to analyze and optimize the fabrication process conditions. The computational simulations were carried out using a two-dimensional model, mimicking the transverse cross-section of fabricated specimens. The computational simulation results revealed that the velocity of the outer pipe, which cannot be experimentally measured, was insufficient for explosive welding and that the walls of the inner pipes had the potential to fail depending on their initial positioning and thickness.

Keywords

Porous materials Welding Mechanical properties Computer simulation Explosive compaction 

References

  1. 1.
    J. Banhart, Prog. Mater. Sci. 46, 559–632 (2005)CrossRefGoogle Scholar
  2. 2.
    V. Shapovalov, MRS Bull. 19, 24–29 (1994)CrossRefGoogle Scholar
  3. 3.
    H. Nakajima, Prog. Mater Sci. 52, 1091–1173 (2007)CrossRefGoogle Scholar
  4. 4.
    K. Hokamoto, M. Vesenjak, Z. Ren, Mater. Lett. 137, 323–327 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Vesenjak, K. Hokamoto, M. Sakamoto, T. Nishi, L. Krstulović-Opara, Z. Ren, Mater. Des. 90, 867–880 (2016)CrossRefGoogle Scholar
  6. 6.
    T. Fiedler, M. Borovinšek, K. Hokamoto, M. Vesenjak, Int. J. Heat Mass Transf. 83, 366–371 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Vesenjak, K. Hokamoto, S. Matsumoto, Y. Marumo, Z. Ren, Mater. Lett. 170, 39–43 (2016)CrossRefGoogle Scholar
  8. 8.
    B. Crossland, Explosive Welding of Metals and Its Application (Clarendon Press, Oxford, 1982), pp. 84–129Google Scholar
  9. 9.
    K. Hokamoto, K. Shimomiya, M. Nishi, L. Krstulovic-Opara, M. Vesenjak, Z. Ren, J. Mater. Process. Technol. 251, 262–266 (2017)CrossRefGoogle Scholar
  10. 10.
    R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, W.J. Carter, High-Velocity Impact Phenomena (Academic Press, New York, 1970), pp. 294–419Google Scholar
  11. 11.
    G.R. Johnson, W.H. Cook, Proceedings of the 7th International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541–574Google Scholar
  12. 12.
    Y. Morizono, T. Fukuyama, M. Matsuda, S. Tsurekawa, Mater. Trans. 52, 2178–2183 (2011)CrossRefGoogle Scholar
  13. 13.
    E.L. Lee, H.C. Hornig, J.W. Kury, Adiabatic Expansion of High Explosive Detonation Products (UCRL-50422 Lawrence Livermore National Laboratory, California, 1968)Google Scholar
  14. 14.
    M. Fujita, A. Chiba, I. Fukuda, H. Osaka, F. Baba, T. Manabe, J. Ind. Explos. Soc. Kogyo Kayaku 48, 176–182 (1983). (in Japanese) Google Scholar
  15. 15.
    R. Prümmer, Explosive Compaction of Powders: Principle and Prospects. Science of Sintering (Springer, New York, 1989), pp. 267–278Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.National Institute of TechnologyKumamoto CollegeYatsushiroJapan
  2. 2.Institute of Pulsed Power ScienceKumamoto UniversityKumamotoJapan
  3. 3.Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia

Personalised recommendations