Skip to main content
Log in

Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of grain size inhomogeneity of large ingot on the hot deformation behavior of Al-8Zn-2Mg-2Cu alloy were investigated using hot compression tests over a temperature range from 300 °C to 450 °C with strain rate from 0.1 s−1 to 10 s−1. It was found that the grain size (100 μm) in surface layer of the ingot is finer than that of the central layer (>200 μm). The surface specimen exhibited lower flow stress than that of central one in the temperature range from 350 °C to 450 °C and the strain rate range from 0.1 s−1 to 1 s−1. The softening mechanism is dynamic recovery, together with a partial dynamic recrystallization (DRX) at high temperature and low strain rate condition regardless the grain size. The nucleation mechanism of DRX is the strain induced grain boundary migration. Therefore, the DRX fraction is higher in surface specimen because the higher grain boundary density provides more nucleation sites. Based on processing maps, the applicable hot deformation parameters for the large size ingot are determined to be at the temperature range of 440–450 °C and the strain rate of 0.1–0.3 s−1 when taking the grain size inhomogeneity into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Feng, X. M. Zhang, S. D. Liu, and Y. L. Deng, Mat. Sci. Eng. A 608, 63 (2014).

    Article  Google Scholar 

  2. J. D. Robson, Mat. Sci. Eng. A 382, 112(2004).

    Article  Google Scholar 

  3. Z. B. Li, J. Shen, L. M. Yan, J. P. Li, X. D. Yan, and B. Q. Mao, Chin. J. Rare Met. 34, 643 (2010).

    Google Scholar 

  4. M. H. Parsa and D. Ohadi, Mater. Design 52, 412 (2013).

    Article  Google Scholar 

  5. H. Mirzadeh, M. H. Parsa, and D. Ohadi, Mat. Sci. Eng. A 569, 54(2013).

    Article  Google Scholar 

  6. D. Ohadi, M. H. Parsa, and H. Mirzadeh, Mat. Sci. Eng. A 565, 90 (2013).

    Article  Google Scholar 

  7. R. D. K. Misra, X. L. Wan, V. S. A. Challa, M. C. Somani, and L. E. Murr, Mat. Sci. Eng. A 626, 41 (2015).

    Article  Google Scholar 

  8. H. R. Rezaei Ashtiani, M. H. Parsa, and H. Bisadi, Mater. Design 52, 478 (2012).

    Article  Google Scholar 

  9. Y. B. Yang, Z. M. Zhang, X. B. Li, Q. Wang, and Y. H. Zhang, Mater. Design 51, 592 (2013).

    Article  Google Scholar 

  10. W. L. Chan, M. W. Fu, J. Lu, and J. G. Liu, Mat. Sci. Eng. A 527, 6638 (2010).

    Article  Google Scholar 

  11. L. Zhen, J. Z. Chen, S. J. Yang,W. Z. Shao, and S. L. Dai, Mat. Sci. Eng. A 504, 55 (2009).

    Article  Google Scholar 

  12. Y. Deng, Z. M. Yin, and J. W. Huang, Mat. Sci. Eng. A 528, 1780 (2011).

    Article  Google Scholar 

  13. K. P. Rao, Y. V. R. K. Prasad, and K. Suresh, Mater. Design 32, 2545 (2011).

    Article  Google Scholar 

  14. K. P. Rao, Y. V. R. K. Prasad, C. Dharmendra, N. Hort, and K. U. Kainer, Mat. Sci. Eng. A 528, 6964 (2011).

    Article  Google Scholar 

  15. Y. V. R. K. Prasad, K. P. Rao, N. Hort, and K. U. Kainer, Mat. Sci. Eng. A 502, 25 (2009).

    Article  Google Scholar 

  16. Y. V. R. K. Prasad, K. P. Rao, N. Hort, and K. U. Kainer, Mater. Lett. 26, 4207 (2008).

    Article  Google Scholar 

  17. N. Srinivasan, Y. V. R. K. Prasad, and K. P. Rao, Mat. Sci. Eng. A 476, 146 (2008).

    Article  Google Scholar 

  18. Y. V. R. K. Prasad and K. P. Rao, Mat. Sci. Eng. A 374, 335 (2004).

    Article  Google Scholar 

  19. K. P. Rao and Y. V. R. K. Prasad, J.Mech. Sci. Technol. 13, 86(1986).

    Google Scholar 

  20. S. Gourdet and F. Montheillet, Acta Mater. 51, 2685(2003).

    Article  Google Scholar 

  21. F. J. Humphreys and M. Hatherty, Recrystallization and Related Annealing Phenomena, 2nd ed., pp.251–253, Elsevier, Oxford, UK (2004).

    Google Scholar 

  22. D. Xiao, X. Y. Peng, X. P. Liang, Y. Deng, G. F. Xu, and Z. M. Yin, Met. Mater. Int. 23, 591 (2017).

    Article  Google Scholar 

  23. G. Meng, B. L. Li, H. M. Li, H. Huang, and Z. R. Nie, Mat. Sci. Eng. A 517, 132 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, D., Wang, G., Chen, H. et al. Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy. Met. Mater. Int. 24, 195–204 (2018). https://doi.org/10.1007/s12540-017-7324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7324-2

Keywords

Navigation