Skip to main content
Log in

Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, molecular dynamics (MD) simulation based study of creep behavior for nanocrystalline (NC) Ni-3 at% Zr alloy having grain size ~ 6 nm has been performed using embedded atom method (EAM) potential to study the influence of variation of temperature (1220-1450 K) as well as change in stress (0.5-1.5 GPa) on creep behavior. All the simulated creep curves for this ultra-fine grained NC Ni-Zr alloy has extensive tertiary creep regime. Primary creep regime is very short and steady state creep part is almost absent. The effect of temperatures and stress is prominent on the nature of the simulated creep curves and corresponding atomic configurations. Additionally, mean square displacement calculation has been performed at 1220 K, 1250 K, 1350 K, and 1450 K temperatures to correlate the activation energy of atomic diffusion and creep. The activation energy of creep process found to be less compared to activation energies of self-diffusion for Ni and Zr in NC Ni-3 at% Zr alloy. Formation of martensite is identified during creep process by common neighbour analysis. Presence of dislocations is observed only in primary regime of creep curve up till 20 ps, as evident from calculated dislocation density through MD simulations. Coble creep is found to be main operative mechanism for creep deformation of ultrafine grained NC Ni-3 at% Zr alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Murty, P. Shankar, B. Raj, B. B. Rath, and J. Murday, Textbook of Nanoscience and Nanotechnology, pp.1–28, Springer Berlin Heidelberg, Germany (2013).

    Book  Google Scholar 

  2. R. Kelsall, I. W. Hamley, and M. Geoghegan (Eds.), Nanoscale Science and Technology, pp.272–276, John Wiley & Sons, USA (2005).

    Book  Google Scholar 

  3. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  Google Scholar 

  4. H. Gleiter, Acta Mater. 48, 1 (2000).

    Article  Google Scholar 

  5. C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995).

    Article  Google Scholar 

  6. U. F. Kocks and H. Mecking, Prog. Mater. Sci. 48, 171 (2003).

    Article  Google Scholar 

  7. A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. Mater. 23, 1679 (1989).

    Article  Google Scholar 

  8. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Metall. Mater. 23, 2013 (1989).

    Article  Google Scholar 

  9. H. Chang, C. J. Altstetter, and R. S. Averback, J. Mater. Res. 7, 2962 (1992).

    Article  Google Scholar 

  10. V. Yamakov, D. Wolf, M. Salazar, S. R. Phillpot, and H. Gleiter, Acta Mater. 49, 2713 (2001).

    Article  Google Scholar 

  11. J. Schiøtz and K. W. Jacobsen, Science 301, 1357 (2003).

    Article  Google Scholar 

  12. H. V. Swygenhoven, M. Spaczer, and A. Caro, Acta Mater. 47, 3117 (1999).

    Article  Google Scholar 

  13. V. Y. Gertsman, M. Hoffmann, H. Gleiter, and R. Birringer, Acta Metall. Mater. 42, 3539 (1994).

    Article  Google Scholar 

  14. R. A. Masumura, P. M. Hazzledine, and C. S. Pande, Acta Mater. 46, 4527 (1998).

    Article  Google Scholar 

  15. T. G. Desai, P. Millett, and D. Wolf, Mat. Sci. Eng. A 493, 41 (2008).

    Article  Google Scholar 

  16. K. A. Padmanabhan, S. Sripathi, H. Hahn, and H. Gleiter, Mater. Lett. 133, 151 (2014).

    Article  Google Scholar 

  17. M. E. Kassner, Fundamentals of Creep in Metals and Alloys, pp.189–232, Butterworth Heinemann, London, UK (2015).

    Google Scholar 

  18. F. R. N. Nabarro and F. De Villiers, Physics of Creep and Creep-Resistant Alloys, pp.47–65, CRC Press, Bristol, UK (1995).

    Google Scholar 

  19. R. Raj and M. F. Ashby, Metall. Trans. 2, 1113 (1971).

    Article  Google Scholar 

  20. C. Herring, J. Appl. Phys. 21, 437 (1950).

    Article  Google Scholar 

  21. R. L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  22. R. Subramanian, A. Metoki, C. V. Alejandro, S. Yamagishi, and M. Okazaki, Mech. Eng. Lett. 1, 15-00461 (2015).

    Article  Google Scholar 

  23. Y. Ashkenazy and R. S. Averback, Nano Lett. 12, 4084 (2012).

    Article  Google Scholar 

  24. F. R. Nabarro, Report of a Conference on the Strength of Solids, p. 75, The Physical Society, London, UK (1948).

    Google Scholar 

  25. S. V. Petegem, S. Brandstetter, B. Schmitt, and H. Van Swygenhoven, Scripta Mater. 60, 297 (2009).

    Article  Google Scholar 

  26. S. Ghosh and A. H. Chokshi, Scripta Mater. 86, 13 (2014).

    Article  Google Scholar 

  27. J. Hu, G. Sun, X. Zhang, G. Wang, Z. Jiang, S. Han, et al. J. Alloy. Compd. 647, 670 (2015).

    Article  Google Scholar 

  28. J. Berry, J. Rottler, C. W. Sinclair, and N. Provatas, Phys. Rev. B 92, 134103 (2015).

    Article  Google Scholar 

  29. Y. J. Wang, A. Ishii, and S. Ogata, Mater. Trans. 53, 156 (2012).

    Article  Google Scholar 

  30. P. Keblinski, D. Wolf, and H. Gleiter, Interface Sci. 6, 205 (1998).

    Article  Google Scholar 

  31. V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 50, 61 (2002).

    Article  Google Scholar 

  32. P. C. Millett, T. Desai, V. Yamakov, and D. Wolf, Acta Mater. 56, 3688 (2008).

    Article  Google Scholar 

  33. Y. J. Wang, A. Ishii, and S. Ogata, Phys. Rev. B 84, 224102 (2011).

    Article  Google Scholar 

  34. M. Meraj and S. Pal, T. Indian I. Metals 69, 277 (2015).

    Article  Google Scholar 

  35. M. A. Bhatia, S. N. Mathaudhu, and K. N. Solanki, Acta Mater. 99, 382 (2015).

    Article  Google Scholar 

  36. B. N. Kim, K. Hiraga, Y. Sakka, and B. W. Ahn, Acta Mater. 47, 3433 (1999).

    Article  Google Scholar 

  37. B. N. Kim and K. Hiraga, Acta Mater. 48, 4151 (2000).

    Article  Google Scholar 

  38. A. J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 51, 2097 (2003).

    Article  Google Scholar 

  39. J. W. Cahn and J. E. Taylor, Acta Mater. 52, 4887 (2004).

    Article  Google Scholar 

  40. Z. T. Trautt, A. Adland, A. Karma, and Y. Mishin, Acta Mater. 60, 6528 (2012).

    Article  Google Scholar 

  41. C. H. Konrad, R. Völkl, and U. Glatzel, Oxid. Met. 77, 149 (2012).

    Article  Google Scholar 

  42. D. Chen, Comp. Mater. Sci. 3, 327 (1995).

    Article  Google Scholar 

  43. J. Li, Model. Simul. Mater. Sc. 11, 173 (2003).

    Article  Google Scholar 

  44. S. L. Gafner, L. V. Redel, and Y. Y. Gafner, J. Exp. Theor. Phys. 114, 428 (2012).

    Article  Google Scholar 

  45. W. Ding, H. He, and B. Pan, J. Mater. Sci. 50, 5684 (2015).

    Article  Google Scholar 

  46. J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91, 4950 (1987).

    Article  Google Scholar 

  47. D. Faken and H. Jónsson, Comp. Mater. Sci. 2, 279 (1994).

    Article  Google Scholar 

  48. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).

    Article  Google Scholar 

  49. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  50. S. R. Wilson and M. I. Mendelev, Philos. Mag. 95, 224 (2015).

    Article  Google Scholar 

  51. A. Stukowski, Model. Simul. Mater. Sc. 18, 015012 (2010).

    Article  Google Scholar 

  52. S. Gollapudi, K. V. Rajulapati, I. Charit, C. C. Koch, R. O. Scattergood, and K. L. Murty, Mat. Sci. Eng. A 527, 5773 (2010).

    Article  Google Scholar 

  53. C. Ni, H. Ding, and X. J. Jin, J. Alloy. Compd. 546, 1 (2013).

    Article  Google Scholar 

  54. T. Song and B. C. De Cooman, ISIJ Int. 54, 2394 (2014).

    Article  Google Scholar 

  55. S. Kajiwara, Metall. Mater. Trans. A 17, 1693 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraj, M., Pal, S. Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy. Met. Mater. Int. 23, 272–282 (2017). https://doi.org/10.1007/s12540-017-6144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6144-8

Keywords

Navigation