Skip to main content
Log in

Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, alloys with composition of equi-atomic substituted TiZrHfNiCu, TiZrHfNiCuCo, and TiZrHfNiCuNb high-entropy alloys (HEAs) were produced by suction casting method. The effects of addition elements on phase composition, microstructure and mechanical behaviors of the HEA were studied. The suction casted Ti20Zr20Hf20Ni20Cu20 HEA exhibits single C14 Laves phase (MgZn2-type) with fine homogeneous microstructure. When Co or Nb elements are added, morphologies are slightly modulated toward well-developed dendritic microstructure, phase constitutions are significantly changed from single Laves phase to mixed multi-phases as well as mechanical properties are also altered with increased plasticity and high strength. It is believed that modulated mechanical properties are mainly ascribed to the change of phase constitution and crystalline structure, together with the microstructural characteristics. This clearly reveals that the selection and addition of supplementary elements based on the formation rule for HEAs play an important role on the evolution of phase, microstructural morphology and mechanical properties of Ti20Zr20Hf20Ni20Cu20 HEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. He, J. Eckert, W. G. Loser, and L. Schultz, Nature 2, 33 (2003).

    Article  Google Scholar 

  2. A. Inoue, Bulk Amorphous Alloys: Preparation and Fundamental Characteristics, p.4, Trans. Tech. Publications, Netherlands (1998).

    Google Scholar 

  3. A. Takeuchi and A. Inoue, Mater. Trans. 41, 1372 (2000).

    Article  Google Scholar 

  4. H. W. Kui and A. L. Greer, Appl. Phys. Lett. 45, 615 (1984).

    Article  Google Scholar 

  5. A. Peker, and W. L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  6. B.-T. Jang, Y.-I. Kim, and S.-H. Yi, Korean J. Met. Mater. 53, 519 (2015).

    Article  Google Scholar 

  7. P. Zywicki, D. H. Ping, T. Abe, H. Garbacz, Y. Yamabe-Mitarai, and K. J. Kurzydlowski, Met. Mater. Int. 21, 617 (2015).

    Article  Google Scholar 

  8. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B Vincent, Mater. Sci. Eng. A 213, 375 (2004).

    Google Scholar 

  9. B. Cantor, Encyclopedia of Materials: Sci. Technol., 2nd ed., pp.1–3, Elevier, Amsterdam, New York (2001).

    Google Scholar 

  10. B. Cantor, Ann. Chim. Sci. Mater. 32, 245 (2007).

    Article  Google Scholar 

  11. B. Cantor, K. B. Kim, and P. J. Warren, Mater. Sci. Forum 27, 386 (2002).

    Google Scholar 

  12. K. B. Kim, Y. Zhang, P. J. Warren, and B. Cantor, Philos. Mag. 83, 2372 (2003).

    Google Scholar 

  13. B. S. Murty, J. W. Yeh, and S. Ranganathan, High-Entropy Alloys, 1st ed., pp. 5–12, Butterworth-Heinemann, UK (2014).

    Google Scholar 

  14. C. Y. Hsu, J. W. Yeh, S. K. Chen, and T. T. Shun, Metall. Mater. Trans. A 35, 1465 (2004).

    Article  Google Scholar 

  15. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  16. J. W. Yeh, Ann. Chim. Sci. Mater. 31, 633 (2006).

    Article  Google Scholar 

  17. F. J. Wang, Y. Zhang, and G. L. Chen, J. Alloy. Compd. 478, 321 (2009).

    Article  Google Scholar 

  18. V. Dolique, A. L. Thomann, and P. Brault, J. Mater. Chem. Phys. 117, 142 (2009).

    Article  Google Scholar 

  19. C. W. Tsai, Y. L. Chen, and M. H. Tsai, J. Alloys. Compd. 486, 427 (2009).

    Article  Google Scholar 

  20. C. Y. Hsu, T. S. Shen, and J. W. Yeh, J. Wear. 268, 653 (2012).

    Article  Google Scholar 

  21. Y. Y. Chen, T. Duval, and U. D. Hung, J. Corros. Sci. 47, 2257 (2005).

    Article  Google Scholar 

  22. Y. J. Zhou, Y. Zhang, and Y. L. Wang, J. Mater. Sci. Eng. A. 454, 260 (2007).

    Article  Google Scholar 

  23. Y. S. Huang, L. Chen, and H. W. Lui, J. Mater. Sci. Eng. A. 457, 77 (2007).

    Article  Google Scholar 

  24. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, Science 345, 1153 (2014).

    Article  Google Scholar 

  25. L. Ma, L. Wang, T. Zhang, and A. Inoue, Mater. Trans. 43, 277 (2002).

    Article  Google Scholar 

  26. A. S. Barros, I. A. Magno, F. A. Souza, C. A. Mota, A. L. Moreira, M. A. Silva, and O. L. Rocha, Met. Mater. Int. 21, 429 (2015).

    Article  Google Scholar 

  27. J. M. Park, H. J. Chang, K. H. Han, W. T. Kim, and D. H. Kim, Scr. Mater. 53, 1 (2005).

    Article  Google Scholar 

  28. J. M. Park, Y. C. Kim, W. T. Kim and D. H. Kim, Mater. Trans. 45, 595 (2004).

    Article  Google Scholar 

  29. G. V. Raynor, J. Inst. Met. 98, 321 (1970).

    Google Scholar 

  30. O. N. Senkov and D. B. Miracle, Mater. Res. Bull. 36, 2183 (2001).

    Article  Google Scholar 

  31. G. S. James, Lange’s Handbook of Chemistry, pp. 151–155, McGraw-Hill, New York (2004).

    Google Scholar 

  32. F. R. Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metal, p. 774, Amsterdam, North-Holland, Netherland (1998).

    Google Scholar 

  33. O. N. Senkov, S. V. Senkova, C. Woodward, and D. B. Miracle, Acta Mater. 61, 1545 (2013).

    Article  Google Scholar 

  34. É. Fazakas, V. Zadorozhnyy, L. K. Varga, A. Inoue, D. V. Louzguine-Luzgin, F. Tian, and L. Vitos, Int. J. Ref. Met. Hard Mater. 47, 131 (2014).

    Article  Google Scholar 

  35. N. D. Stepanov, N. Y. Yurchenko, V. S. Sokolovsky, M. A. Tikhonovsky, and G. A. Salishchev, Mater Lett. 161, 136 (2015).

    Article  Google Scholar 

  36. N. D. Stepanov, N. Y. Yurchenko, D. V. Skibin, M. A. Tikhonovsky, and G. A. Salishchev, J. Alloy. Compd. 652, 266 (2015).

    Article  Google Scholar 

  37. S. Singh, N. Wanderka, B. S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).

    Article  Google Scholar 

  38. D. G. Shaysultanov, N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, and O. N. Senkov, JOM 65, 1815 (2013).

    Article  Google Scholar 

  39. J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, and Z. P. Lu, Acta Mater. 62, 105 (2014).

    Article  Google Scholar 

  40. Y. Lu, Y. Dong, Li. Jiang, T. Wang, T. Li, and Y. Zhang, Entropy, 17, 2355 (2015).

    Article  Google Scholar 

  41. T. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Intermetallics 52, 105 (2014).

    Article  Google Scholar 

  42. S. Guo, Q. Hu, C. Ng, and C. T. Liu, Intermetallics 41, 96 (2013).

    Article  Google Scholar 

  43. S. Guo and C. T. Liu, Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Man Park or Ki Buem Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.J., Na, Y.S., Hong, S.H. et al. Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys. Met. Mater. Int. 22, 551–556 (2016). https://doi.org/10.1007/s12540-016-6034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6034-5

Keywords

Navigation